
www.manaraa.com

Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-23-2017

Active Response Using Host-Based Intrusion
Detection System and Software-Defined
Networking
Jonathon S. Goodgion

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Digital Communications and Networking Commons, and the Information Security
Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Goodgion, Jonathon S., "Active Response Using Host-Based Intrusion Detection System and Software-Defined Networking" (2017).
Theses and Dissertations. 1575.
https://scholar.afit.edu/etd/1575

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1575&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1575&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1575&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1575&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholar.afit.edu%2Fetd%2F1575&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholar.afit.edu%2Fetd%2F1575&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholar.afit.edu%2Fetd%2F1575&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1575?utm_source=scholar.afit.edu%2Fetd%2F1575&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

www.manaraa.com

ACTIVE RESPONSE USING HOST-BASED
INTRUSION DETECTION SYSTEM AND
SOFTWARE-DEFINED NETWORKING

THESIS

Jonathan S. Goodgion, 2d Lt, USAF

AFIT-ENG-MS-17-M-032

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

www.manaraa.com

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

www.manaraa.com

AFIT-ENG-MS-17-M-032

ACTIVE RESPONSE USING HOST-BASED INTRUSION DETECTION

SYSTEM AND SOFTWARE-DEFINED NETWORKING

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Jonathan S. Goodgion, B.S.C.S.

2d Lt, USAF

March 2017

DISTRIBUTION STATEMENT A:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

www.manaraa.com

AFIT-ENG-MS-17-M-032

ACTIVE RESPONSE USING HOST-BASED INTRUSION DETECTION

SYSTEM AND SOFTWARE-DEFINED NETWORKING

THESIS

Jonathan S. Goodgion, B.S.C.S.
2d Lt, USAF

Committee Membership:

Barry E. Mullins, Ph.D., P.E.
Chair

Timothy H. Lacey, Ph.D., CISSP
Member

Michael R. Grimaila, Ph.D., CISM, CISSP
Member

www.manaraa.com

AFIT-ENG-MS-17-M-032

Abstract

Recent studies have shown information misuse is more abundant within organi-

zations, possibly from the modern proliferation of phishing and social engineering

attacks. To address this problem, security experts have proposed local, internal in-

spection, known as Host-based Intrusion Detection Systems (HIDS). This technique

allows detection of malicious activity to occur at the endpoints – the individual hosts.

This research proposes Active Host-based Network Security Response (AHNSR):

a framework that utilizes HIDS with Software-Defined Networking (SDN) to enhance

system security by allowing dynamic active response and reconstruction from a global

network topology perspective. Vital to the operational architecture, SDN introduces

new programming capabilities that resolve the rigid configurations of traditional net-

works. This flexibility is essential in an era of rapidly evolving threats that require

unique and adaptive security defenses, as SDN-software solutions enable more flex-

ible security controls in both virtualized and enterprise environments. These SDN

security controls aim at providing access to legitimate users, protecting systems from

attacks, and providing mitigation or countermeasures when attacks do occur.

AHNSR is a complete and automated dynamic security solution, starting with

alert generation and ending with an appropriate SDN-enabled response on physical

switch flow tables. Responses include traffic redirection, host quarantining, filtering,

and more. SDN allows greater flexibility and command/control compared to legacy,

manual administrator response or the iptables solution of traditional IDS. By pushing

security event information to a global controller, immediate and intelligent changes

can be made for packet forwarding devices across the network. When, not if, an

attack occurs, AHNSR increases responsiveness while decreasing information damage

iv

www.manaraa.com

– a goal every incident response team should have.

This research compares different methods of pushing security event information

from hosts and the resulting system performance at specified security level thresholds.

A testable SDN-controlled network is constructed with multiple hosts, OpenFlow en-

abled switches, and a Floodlight controller, all linked to a custom, novel interface for

the Open-Source SECurity (OSSEC) HIDS framework. OSSEC is implemented in a

server-agent architecture, allowing scalability and OS independence. System effective-

ness is evaluated against the following factors: alert density and selective Floodlight

module response types.. At the expected operational load of 500 events per second

(EPS), results reveal a mean system response time of 0.5564 seconds from log gener-

ation to flow table update via Floodlight’s Access Control List module. These results

demonstrate the AHNSR framework as a dependable (100% successful alert genera-

tion), effective (under 1 second), and efficient (under 35% CPU utilization) security

solution in the emulated test network. Load testing further assesses performance

of response methods at EPS levels 10—10000. A dynamic model is fit against the

data, allowing for performance estimates of dynamic response policies found in real

enterprise environments.

v

www.manaraa.com

Acknowledgements

I am continually humbled by the blessings I receive, and must first give thanks to

the Lord for providing it all.

I have learned so much in this program thanks to the educational passion demon-

strated by AFIT faculty members like Dr. Barry Mullins, Dr. Timothy Lacey, and Dr.

Michael Grimaila. They help make AFIT an institution that truly fosters, challenges,

and mentors the future leaders of this great nation.

Lastly, I am beyond grateful for my beloved wife and her unending support. Thank

you for being a light in my life, helping discern the Lord’s will for us in the marvelous

mission to share love everywhere.

vi

www.manaraa.com

Table of Contents

Page

Abstract . iv

Acknowledgements . vi

List of Figures . xi

List of Tables . xiv

List of Abbreviations . xv

I. Introduction . 1

1.1 Background . 1
1.2 Problem Statement . 1
1.3 Research Goals . 2
1.4 Hypothesis . 4
1.5 Approach . 4
1.6 Assumptions/Limitations . 5
1.7 Contributions . 6
1.8 Thesis Overview. 6

II. Background and Related Research . 7

2.1 Overview . 7
2.2 Networking . 7

2.2.1 History . 9
2.2.2 SDN Origination . 10

2.3 SDN Components . 11
2.3.1 Controller: A Networking Operating System 12
2.3.2 Southbound Interface . 13
2.3.3 Northbound Interface . 15
2.3.4 Special/Optional Components . 15

2.4 Use Cases and Applications . 16
2.4.1 Access Control . 16
2.4.2 Mobility and Migration . 16
2.4.3 Fault Tolerance . 16
2.4.4 Dynamic Service Bandwidth . 17
2.4.5 Current Research Areas . 18

2.5 Security . 19
2.5.1 Attack Vectors . 19
2.5.2 Securing Using SDN . 20

2.6 Intrusion Detection Systems . 21
2.6.1 Alert Generation . 22

vii

www.manaraa.com

Page

2.6.2 Incident Response . 23

2.7 OSSEC: Open Source SECurity . 24

2.8 Advanced Message Queuing Protocol . 26

2.8.1 Brokers . 27

2.8.2 RabbitMQ. 28

2.9 Related Research . 28

2.10 Conclusion . 30

III. AHNSR Design . 31

3.1 Overview . 31

3.2 System Summary . 31

3.3 SDN Controller . 33

3.3.1 Reactive/Proactive Flow Entry . 35

3.4 OSSEC Configuration . 36

3.4.1 Agents . 37

3.4.2 Decoder/Rules . 38

3.4.3 Active Response . 41

3.4.4 SDN Response . 42

3.4.5 Database . 43

3.5 Security . 43

3.6 Complete AHNSR Response Flow . 46

3.7 Design Summary . 46

IV. Methodology . 48

4.1 Problem/Objective . 48

4.2 System Under Test . 49

4.2.1 Assumptions . 50

4.3 Metrics . 52

4.4 Experiment Factors . 53

4.5 Experiment Parameters . 55

4.6 Experimental Design . 55

4.6.1 Expected Load Level . 55

4.6.2 Treatments . 56

4.6.3 Testing Process . 56

4.6.4 Repeated Measures . 59

4.6.5 Timing . 59

4.7 Statistical Analysis . 61

4.8 Methodology Summary . 62

viii

www.manaraa.com

Page

V. Results and Analysis . 63

5.1 Overview . 63
5.2 OSSEC Log Collection Behavior . 63
5.3 Performance Under Expected Load . 67

5.3.1 Expected Load: Response Time . 67
5.3.2 Expected Load: CPU . 70

5.4 Load Testing . 73
5.4.1 AG . 76
5.4.2 Load Testing: RT . 76
5.4.3 Load Testing: CPU . 78

5.5 RT Performance Models . 79
5.5.1 Dynamic Model . 81

5.6 Chapter Summary . 85

VI. Conclusion . 87

6.1 Overview . 87
6.2 Research Conclusions . 87
6.3 Research Significance . 88
6.4 Future Work . 89
6.5 Chapter Summary . 90

Appendix A. Log Generation Script . 91

Appendix B. Experiment Management Script . 93

Appendix C. OSSEC Configuration . 96

Appendix D. Internal Options Configuration . 99

Appendix E. Floodlight Properties . 101

Appendix F. Active Response Script . 103

Appendix G. Data Parsing . 105

Appendix H. Networking Parameters . 109

Appendix I. R Analysis Script: Tests 1-4 . 110

Appendix J. R Analysis Script: Load Tests . 115

Appendix K. Trial Ranges . 120

Appendix L. CPU Data Reduction . 122

ix

www.manaraa.com

Page

Appendix M. Threat Level Classification . 124

Bibliography . 125

x

www.manaraa.com

List of Figures

Figure Page

1 Layered view of the functional networking planes [1] 8

2 Decoupling applications, operating systems, and
hardware in network devices is similar to the transition
in personal computing [2] . 10

3 SDN components [1] . 12

4 How flow tables are used in the SDN architecture [1] 14

5 Possible attacks on OpenFlow enabled networks [3] 20

6 OSSEC architecture [4] . 25

7 AMQP architecture [5] . 27

8 Dynamic Security Control using SDN (DSCS) process [6] 29

9 Network diagram of AHNSR components . 32

10 AHNSR system design . 33

11 Floodlight architecture and module interaction [7] 34

12 Reactive vs. proactive Floodlight modules . 36

13 OSSEC log flow in a server/agent architecture . 37

14 Decoding phases for sample log entry . 40

15 EER diagram of OSSEC database . 44

16 Response flow through agent, OSSEC, Floodlight, and
switch . 47

17 System Under Test (SUT) and Component Under Test
(CUT) . 50

18 Advanced network diagram between server and switch 51

19 Log and alert timestamping through the AHSNR system 60

20 Sample RT-data.csv file . 61

xi

www.manaraa.com

Figure Page

21 Sample CPU-data.csv file . 61

22 Individual alert response time from 250 logs collected on
one host . 64

23 Individual alert response time from 250 logs per host,
from 10 hosts . 64

24 Sample log collection behavior with a 1 second timeout
loop . 66

25 RT quartile ranges from 15 trials, 500 EPS, 10 active
agents . 68

26 C.I. on the RT mean from 15 trials of 500 EPS, 10
active agents . 69

27 OSSEC and Floodlight CPU quartile ranges, 15 trials at
500 EPS . 71

28 C.I. on the Floodlight and OSSEC CPU mean, 15 trials
of 500 EPS . 71

29 Mean RT for EPS levels 10 through 10000, 10 active
agents . 77

30 Mean CPU utilization for EPS levels 10 through 10000,
10 active agents . 79

31 Fitting linear models where y = Response Time and x
= EPS . 80

32 RT estimate in 80% Log, 10% ACL, 5% Firewall, 5%
Static Flow model . 85

33 Dynamic model test result . 86

34 Static Flow RT quartile ranges (per trial at 500 EPS) 120

35 Log-Only RT quartile ranges (per trial at 500 EPS) 120

36 Firewall RT quartile ranges (per trial at 500 EPS) 121

37 ACL RT quartile ranges (per trial at 500 EPS) . 121

38 All OSSEC CPU utilization measurements (500 EPS) 122

xii

www.manaraa.com

Figure Page

39 Reduced OSSEC CPU utilization measurements (500
EPS) . 122

40 All Floodlight CPU utilization measurements (500 EPS) 123

41 Reduced Floodlight CPU utilization measurements (500
EPS) . 123

xiii

www.manaraa.com

List of Tables

Table Page

1 Performance metrics . 53

2 Experiment factors . 54

3 Treatments . 57

4 Repeated measures to meet minimum 7065 power
sample size . 59

5 AHNSR performance results under 500 EPS load, 10
active agents . 67

6 Log-Only response load testing results . 74

7 ACL response load testing results . 74

8 Firewall response load testing results . 75

9 Static Flow response load testing results . 75

10 Dynamic model interpretation . 82

11 Internal OSSEC threat level classification descriptors [7] 124

xiv

www.manaraa.com

List of Abbreviations

Abbreviation Page

SDN Software-Defined Networking . 1

APT Advanced Persistent Threat . 1

ACL Access Control List . 3

PCI DSS Payment Card Industry Data Security Standards 3

OSSEC Open Source SECurity . 5

IDS Intrusion Detection Systems . 7

TCP Transport Control Protocol . 7

IP Internet Protocol . 7

RTC Real-Time Communication . 9

OF OpenFlow . 11

ONF Open Networking Foundation . 11

NOS Network Operating System . 12

API Application Programmable Interface . 15

NFV Network Function Virtualization . 18

DoS Denial of Service . 20

ISP Internet Service Provider . 21

DoD Department of Defense . 22

NIDS Network-based Intrusion Detection Systems 22

HIDS Host-based Intrusion Detection Systems . 22

USM Unified Security Management . 24

MOM Message Oriented Middleware . 26

AMQP Advanced Message Queuing Protocol . 26

xv

www.manaraa.com

Abbreviation Page

TLS Transport Layer Security . 26

DSCS Dynamic Security Control using SDN . 28

SIM Security Incident Management . 29

AHNSR Active Host-based Network Security Response 31

REST REpresentational State Transfer . 32

JSON JavaScript Object Notation . 35

XML eXtensible Markup Language . 38

SSH Secure Shell . 39

MAC Media Access Control . 42

EER Enhanced Entity Relationship . 43

SSL Secure Sockets Layer . 44

PKI Public Key Infrastructure . 45

VM Virtual Machine . 49

NIC Network Interface Card . 50

AG Alerts Generated . 52

RT Response Time . 52

CPU Central Processing Unit . 53

CSV Comma Separated Values . 58

NTP Network Time Protocol . 60

ANOVA Analysis Of Variance . 62

xvi

www.manaraa.com

ACTIVE RESPONSE USING HOST-BASED INTRUSION DETECTION

SYSTEM AND SOFTWARE-DEFINED NETWORKING

I. Introduction

1.1 Background

The world is rapidly emerging as a network of networks, with millions of packet for-

warding devices responsible for the successful delivery of any request across the Inter-

net. However, traditional IP network configuration is complex, and once properly con-

figured, usually remains as a semi-static architecture. Inevitably, the exponentially-

advancing technology in the current age quickly outgrows the static limitations of

traditional networks. Software-Defined Networking (SDN) is a possible solution to

this problem. It is an emerging networking paradigm that gives hope in solving the

limitations of current network infrastructures.

1.2 Problem Statement

According to annual cyber trend reports, half a billion personal records were stolen

or lost in 2015 [8]. There is no argument here: any “hackivist” or state-sponsored

entity has free reign on poorly-configured and vulnerable systems. Even well-vetted

commercial cyber defense systems can fall victim to a Zero-Day vulnerability or Ad-

vanced Persistent Threat (APT). Additionally, there is a trend of increasing insider

involvement in data breaches; while it only accounted for around 10 percent of data

breaches in 2014, insider involvement was present in 32 percent of the claims sub-

mitted in 2015. With more than three-quarters of surveyed US government agencies

1

www.manaraa.com

admitting they are more focused on combating insider threats today than one year

ago, it corroborates the significance of the problem.

Even though threat detection is possible through various Commercial-Off-The-

Shelf (COTS) products, it remains ineffective. Unfortunately, law enforcement and

third party notification remained the top breach discovery methods in 2015 [8]. In

2015, 92.9% of compromises took minutes or less to complete, and when companies

have to wait on external notification, it’s too late to secure, respond, and mitigate

the active threat [9]. Therefore, it is apparent there is a problem in real-time threat

detection and response from both external and internal originating intrusions.

Software-Defined Networking introduces a new framework for network configura-

tion, security, and management. Researchers are investigating and developing a wide

array of innovative and effective tools that utilize the fundamental architecture of a

global controller in a Software-Defined Network. These new tools may help prevent

and effectively respond to intrusions. When attackers gain unauthorized access to any

given machine, their most common goal is to move laterally to extract the most infor-

mation possible. Thus, the most effective methods in reducing data loss and damage

are 1) preventing lateral access to locally networked machines and 2) responding to

the breach as soon as possible.

1.3 Research Goals

In response to the problems of threat detection and response, this research seeks

to expand on a process of actively responding to local host-based security violations

by utilizing key technologies provided by Host-based Intrusion Detection Systems

in combination with Software-Defined Networking. The ideal system would integrate

seamlessly with existing systems, provide administrators with greater network control

and insight, and significantly reduce the possibility of data loss/theft while maintain-

2

www.manaraa.com

ing access to critical network services.

The research assesses the performance of four different methods to SDN response

demanding alerts, in which immediate network reconfiguration by a SDN controller

helps mitigate a potential active threat or intrusion. An open-source Host-based In-

trusion Detection System provides the detection and alert mechanism, whereas the

SDN controller is responsible for executing the response with flow table updates. The

SDN controller Application Programming Interfaces (APIs) provide the four evalu-

ated methods of responding to an alert: Firewall, Access Control List (ACL), Static

Flow Entry, and Log-Only. Each method helps meet specific data security compli-

ance requirements, such as those required by Payment Card Industry Data Security

Standards (PCI DSS) 2/3.2 and the Health Insurance Portability and Accountability

Act (HIPAA), which are furthered discussed in Section 2.7 [10] [11].

Specifically, this research seeks to expand on Todd’s Dynamic Security Control

System (DSCS), discussed in Section 2.9 [6]. The limitations of Todd’s previous work

in this area have been quantified, and this research seeks to mitigate shortcomings

and expand functionality in the following ways:

Limitation Mitigations

• The use of Floodlight’s stateless firewall could not interrupt active connections

if they were found to be malicious. This research seeks a viable solution.

• The DSCS system was not interfaced with an actual IDS. This research seeks

to use industry standard software (OSSEC) and its APIs to generate alerts.

Improvements

• A database schema is incorporated to allow alert sharing and archival tracking,

meeting standard logging policy requirements and improving scalability.

3

www.manaraa.com

• Different approaches to intrusion response (firewall or access control list up-

dates, first hop modifications, honeypot redirection, etc.) are allowed for more

dynamic control.

• The AMQP publisher/broker model can be replaced with a similar messaging

design within a Security Incident Management (SIM) or Security Information

and Event Management (SIEM) product.

• The programmability of the AMQP protocol can be replicated in a SDN en-

vironment because routing decisions are defined outside the network layer of

packet forwarding devices.

1.4 Hypothesis

This research hypothesizes as the aggregate number of logs being generated by

hosts increases, the response time will increase, the processor resource utilization will

also increase, and the alert generation rate will remain above the protocol standard

of 98%. At a normal operational load level, this research expects the average event

response time to be under 1 second for near real-time reactivity. Additionally, when

comparing the different response methods, the Access Control List response method

will outperform the Firewall response method in both quantitative and qualitative

metrics.

1.5 Approach

An experimental fully-switched network is configured, consisting of ten virtual

agents with host-based intrusion monitoring, one management server, and one SDN

controller. In order to emulate a full SDN network, packet forwarding is restricted to

OpenFlow enabled switches on real hardware. High resolution timing scripts are de-

4

www.manaraa.com

ployed and log generation is controlled while monitoring system performance through

the detection/response workflow. An active response script is developed to query

different modules provided by the SDN controller.

1.6 Assumptions/Limitations

The following assumptions/limitations are understood when designing and exe-

cuting experiments for the active response system:

• The framework is dependent on well-configured host auditing and logging poli-

cies, as well as appropriate rule definitions on the management server.

• Triggers and definitions are limited by the features provided by the Host-based

IDS utilized in the research, Open Source SECurity (OSSEC), version 2.9 RC3.

More specifically, alert triggers are limited to system log analysis, application

log analysis, connection status, rootkit signature detection, selective registry

changes, and/or selective file changes.

• Rule definitions are limited to the following: alert level, specific rule ID, event

frequency, maximum size, time frame, category, source IP, destination IP, user-

name, hostname, program name, URL, and/or matching regex parameters.

• This research does not examine identification accuracy (e.g., false positive fre-

quency) or use any datasets of captured attacks.

• The Floodlight controller has out-of-band management to all switches in the

network. If this is not true, it does not ensure dedicated OpenFlow channels

that may become congested otherwise, which can invalidate the observed results.

• All switches must support OpenFlow 1.3 or higher, as some response modules

require features in these versions.

5

www.manaraa.com

• A pre-configured flow is utilized for proactive forwarding to the IDS server. This

would not be possible in a pure reactive forwarding environment.

• CPU utilization data collection frequency is limited to at most once per second.

This reduces the sample size for this metric significantly and can potentially be

inaccurate or inconsistent between trials.

1.7 Contributions

This thesis contributes to the general SDN body of research. It helps answer

questions about how SDN can be utilized in further securing local area networks

by providing interfaces to already existing systems. It provides empirical evidence

that a complete SDN-interfaced intrusion detection and response action is capable of

actively mitigating threats in near real-time.

1.8 Thesis Overview

This thesis document is arranged in six chapters. Chapter 2 presents fundamental

concepts of networking, SDN, IDS, and other relevant research. Chapter 3 discusses

the system design details and the necessary configuration in implementing an active

response. The experiment methodology is presented in Chapter 4 along with the

standard parameters, metrics, and testing process. Chapter 5 covers the results and

necessary statistical analysis of the collected data. Lastly, Chapter 6 summarizes the

research and discusses potential opportunities for future work in this domain.

6

www.manaraa.com

II. Background and Related Research

2.1 Overview

This chapter discusses Software-Defined Networking (SDN), Intrusion Detection

Systems (IDS), and the relevant bodies of research. Section 2.1 discusses the history

of networking and the motivation of SDN development, while Section 2.2 further

explains SDN fundamental components. Several application and use case proposals

are addressed in Section 2.3, along with current research trends in this domain. One

of these areas is security, which is discussed further Section 2.4, from both potential

weakness and strength perspectives. In Sections 2.5 and 2.6, high-level concepts of

Host-based Intrusion Detection Systems and the Advanced Message Queuing Protocol

are introduced respectively, as they play key roles in the research methodology for

security policy enforcement using SDN.

2.2 Networking

In order to reliably send data from one host to another, computers depend on

switches, routers, and other packet forwarding devices to pass along the message. This

is necessary for both inter and intra network communication. Data is encapsulated

into packets and sent across various mediums utilizing transport and network layer

protocols, most notably the Transport Control Protocol (TCP)/Internet Protocol

(IP). These protocols establish a standard “language” and delivery method for the

majority of traffic on the Internet. However, all machines cannot be directly connected

to one another. Thus, packet forwarding devices act as the highway intersections,

directing traffic towards individual, appropriate destinations.

Computer networks can be divided into three functional planes: data, control, and

management [12]. The data plane is where the networking devices reside and is where

7

www.manaraa.com

the raw bits are forwarded through to the next device. The control plane represents

the protocols used to populate the forwarding tables of the data plane elements.

Lastly, the management plane represents the services, software, and protocols used to

remotely monitor and configure the control plane. Figure 1 depicts the combination of

these three planes in a top-down, streamlined process of policy development to policy

execution. Network policy is defined in the management plane, which is enforced via

the control plane and ultimately executed at the physical data plane.

The most significant limitation of current packet forwarding devices is caused by

their implementation of these three functional planes. Switches were designed to be

resilient and independently capable, which resulted in a tight coupling of the data

and control planes. Therefore, the routers are responsible for both packet forwarding

(data plane), as well as managing a variety of distributed routing algorithms (control

plane). The control plane is responsible for any extra processing (e.g., Link Layer

Discover Protocol, Border Gateway Protocol) that is necessary to perform the basic

data plane activities. Unfortunately routers are doing all of this extra work themselves

in tracking topology changes, computing routes, and installing forwarding rules. In

this framework, the devices themselves are independently responsible for both man-

aging and executing their own forwarding tables. This breeds a decentralized, static

Figure 1. Layered view of the functional networking planes [1]

8

www.manaraa.com

architecture – a contributing factor to the difficulty of innovation in this domain.

2.2.1 History.

There have been three distinct phases in the demands of networking over the past

20 years. Beginning in the late 1990s, as the Internet became a consumable service

in both business and home, the focus was almost exclusively on bandwidth. Data

rates were the only metric in considering the performance of file transportation from

point A to point B. It did not matter how data got to a destination. However, as

more services and protocols were introduced in networking, specifically Real-Time

Communication (RTC) traffic, a new performance metric was introduced: latency.

In the 2005 time-frame, with the advent of video and audio streaming services

such as YouTube, Skype, and Voice Over IP (VoIP), network administrators began

to realize that latency was a real challenge with these services. This problem occurs

because the service depends on delivery timing of individual packets, far different

from the former concept of getting an entire file to a destination regardless of actual

semantics. But as internal network RTC traffic volume increased, competition of those

“intersection” resources at packet forwarding devices demanded the need to prioritize

traffic type. As a result, Quality of Service (QoS) was introduced to prioritize the

forwarding of individual packets (e.g., RTC traffic) to reduce latency for those services.

Moving forward to present-day, networks have become increasingly complex. With

more devices and more services than ever before, it is becoming clear that QoS stan-

dards cannot accurately prioritize traffic all of the time. It is limited by strict as-

sumptions, and fails to allow administrators to dynamically model and shape their

traffic depending on the real-time needs of a business. There is a desperate need to

programmatically respond to network resource demand by modifying certain priori-

tization and flow controls.

9

www.manaraa.com

2.2.2 SDN Origination.

SDN, in its simplest form, is pulling away the intelligence from switch hardware.

This trend is already occurring in other domains with positive results. For example,

file servers were originally dedicated to a particular service and all permissions, data,

assets, and physical components were managed in a self-contained unit. These servers

have been replaced by Storage Area Networks (SAN), allowing a consolidation of file

systems to abstract the connections from a single operating system [13]. Similarly,

virtualization tools are helping create multiple instances of software operate on the

same hardware.

Investigating the history of basic computing reveals this trend. Nick McKeown

highlights in Figure 2 the similarities between legacy mainframe computers and tra-

ditional networking devices [2]. Both incorporate specialized applications, operating

systems, and hardware in a vertically-locked environment. The shift to personal com-

puting was revolutionary, yet required the separation of hardware and intelligence.

While this trend grew rapidly in these other domains, the traditional IP networking

architecture failed to follow suit – until SDN was introduced.

Vertically integrated
Closed, proprietary

Slow innovation
Small industry

Specialized
Operating

System

Specialized
Hardware

App*App*App*App*App*App*App*App*App*App*App*

Specialized
Applications

Horizontal
Open interfaces
Rapid innovation

Huge industry

Microprocessor

Open Interface

Linux* Mac*
OS*

Windows*
(OS)* or or

Open Interface

Mainframes(

(a) Mainframe computer framework

Vertically integrated
Closed, proprietary

Slow innovation

App*App*App*App*App*App*App*App*App*App*App*

Horizontal
Open interfaces
Rapid innovation

Control*
Plane*

Control*
Plane*

Control*
Plane* or or

Open Interface

Specialized
Control
Plane

Specialized
Hardware

Specialized
Features

Merchant
Switching Chips

Open Interface

Routers/Switches(

(b) Traditional networking framework

Figure 2. Decoupling applications, operating systems, and hardware in network devices
is similar to the transition in personal computing [2]

10

www.manaraa.com

SDN originated from the work at Stanford University in 2007 by researcher Martin

Casado [14]. His team successfully decoupled the control and data planes, resulting in

the development of OpenFlow (OF), an open-source communication protocol used in

the “southbound” control channel, which has become the standard interface between

servers and SDN-enabled switches. Shifting the intelligence away from the physi-

cal forwarding devices allows more flexibility in networking configuration than ever

before.

According to the Open Networking Foundation (ONF), SDN is defined as a net-

work architecture that “decouples the network control and forwarding functions en-

abling the network control to become directly programmable and the underlying

infrastructure to be abstracted for applications and network services” [15]. Kreutz et

al go further in [1], defining SDN with four pillars:

1. The control plane functionality is decoupled from the data plan network devices.

2. Forwarding decisions are “flow” based versus strictly destination based (flows

are defined in Section 2.3.2).

3. Control logic is executed on an external device: the SDN controller.

4. Software applications running on top of the SDN controller are capable of in-

teracting with the underlying data plane devices.

When a network builds upon these four pillars, it successfully forces the separation

of management and execution.

2.3 SDN Components

By nature of the four pillars described, SDN requires distinct components that

have already been mentioned in theory. Figure 3 depicts the SDN architecture and

11

www.manaraa.com

its fundamental components. This section discusses the three central components

unique to SDN: the Network Operating System, the southbound interface, and the

northbound interfaces.

Figure 3. SDN components [1]

2.3.1 Controller: A Networking Operating System.

The controller, also known as the Network Operating System (NOS), is arguably

the most important component in the SDN architecture. The purpose of any operat-

ing system is to provide abstraction to higher level applications and communication

to lower level components. It is also responsible for managing those resources and

services. SDN incorporates this same paradigm in delivering and facilitating network

management. At a minimum, a NOS provides the following functionality: maintain

network state and topology information, discover new devices, and distribute network

12

www.manaraa.com

configuration settings [12].

When designing the NOS architecture, the most significant consideration is whether

it operates in a distributed or centralized structure. A centralized controller man-

ages all data plane devices as a single entity. NOX, Floodlight, and Beacon have

been designed as such [15]. However, centralized systems may introduce danger as a

single point of failure; this threat has motivated others to develop distributed NOS

controllers. Another advantage of a distributed system is scalability. Onix, ONOS,

and Hyperflow are examples of distributed controllers, all capable of higher degrees

of availability and resiliency by their fault tolerant design [16].

In this research, the Floodlight controller is used. It is an enterprise-class, Apache-

licensed, and Java-based OpenFlow controller. This controller is selected due to its

community support, open-source code base, centralized design, and implementation

of a northbound interface.

2.3.2 Southbound Interface.

The southbound interface is the link between the NOS and the packet forwarding

devices. The most commonly accepted protocol for this communication is Casado’s

OpenFlow, which provides three sources of information for NOSs [14]. First, reactive

messages are sent to the controller whenever links drop or port changes occur. Second,

flow statistics and corresponding updates are sent to the controller. Last, “packet-in”

messages are sent across the southbound interface whenever the switches/routers do

not know what action to take on an incoming flow.

A flow is an important concept in SDN, and consists of three parts: 1) a matching

rule, 2) actions to perform on matching packets, and 3) counters for statistical use.

Flow generation is accomplished by utilizing the Ternary Content Addressable Mem-

ories (TCAMs) that are already implemented by forwarding tables in typical modern

13

www.manaraa.com

switching equipment [17]. The advantage in SDN is that flows are generated with

a global perspective of the network. Flow rules are determined at the control and

management level, and then disseminated throughout the network.

Figure 4 shows how upon packet arrival, if a match is determined against a rule in

a flow entry, the corresponding action occurs. For example, it can forward to either

a physical or virtual port, en-queue to a particular port, encapsulate and send to the

controller, modify existing fields, or simply drop the packet. “Table Chaining” also

introduces hierarchical look-up options by having an action link to another flow table

or even a group table, defined as a specialized table which resembles a set of multiple

actions to execute [1].

Figure 4. How flow tables are used in the SDN architecture [1]

Flow entries may be issued on a hard timeout or idle timeout basis. A hard

timeout signals the switch or router to remove the entry after its single use, while

an idle timeout allows the entry to remain until it has had no matches for a certain

amount of time. Timeouts are helpful because a single flow can be decided once

against the first packet in a targeted TCP connection and then used repeatedly for

subsequent forwarding, increasing performance.

14

www.manaraa.com

2.3.3 Northbound Interface.

The northbound interface is mainly a software domain that allows network ap-

plications to function independent from the lower level SDN implementation, but

also enables dynamic control of actual network resources. The Open Networking

Foundation (ONF) framework describes customer and business applications having

abstracted views and the ability to program specific needs across multiple domains

[15].

While OpenFlow has emerged as the de facto standard on the southbound inter-

face, there is not an equivalent Application Programmable Interface (API) adoption

for its counterpart north side. Whatever the case may be, an open-source north-

bound interface is extremely important in keeping true portability and interoperabil-

ity among SDN platforms.

2.3.4 Special/Optional Components.

Depending on the SDN deployment environment, there may be special require-

ments or optional features that help improve performance. For example, in a dis-

tributed controller environment, East/Westbound APIs are a special component in-

volved. This horizontal interface is responsible for exchanging data between con-

trollers, running consistency checks, and monitoring controller function status. SDNi

is a protocol developed to coordinate flow setup across these distributed platforms

[18].

In addition, the concept of virtualization allows an entire SDN to live as a virtual

network. Open vSwitch is an open source virtual switch that can run as a stand-

alone hypervisor switch, or as a distributed switch across multiple servers. The virtual

switching occurs within the Virtual Machine Manager (VMM) and can therefore avoid

physical hardware limitations. For example, Open vSwitch uses Link Aggregation

15

www.manaraa.com

Control Protocol (LCAP), a method of combining multiple physical ports to form a

single logical channel in parallel [19].

2.4 Use Cases and Applications

The programmability of SDN has presented a variety of use cases for real world

scenarios. This section discusses a few examples, and explains how the benefits of

SDN contributes to their potential.

2.4.1 Access Control.

In a dynamic access control model, SDN allows forwarding devices to “inspect”

the first packet on any connection. They can then consult the access control policy via

pre-determined flows in their tables (proactive modeling) or request an access policy

from the controller (reactive modeling). SDN allows these rules to be instantiated

at a global level to block or route traffic appropriately, and do not require manual

configuration at each switch/router in the internal network. This research utilizes

Floodlight’s proactive access control module as one response method.

2.4.2 Mobility and Migration.

SDN provides the ability for seamless migration of mobile clients. If a host mi-

grates to a new location on the network, controller topology visibility is able to signal

the change, and modify rules/routing information to optimally reroute traffic imme-

diately.

2.4.3 Fault Tolerance.

A major issue with Shortest Path First (SPF) routing algorithms found on many

networks today is the problem of non-deterministic failures. The failure of a link

16

www.manaraa.com

between two nodes affects all nodes that use this link to reach some destinations.

These nodes will change their routing tables and send out routing updates the first-

hop devices, essentially competing over alternate links in the network. Latency is

involved during the rebuild, and the algorithm’s non-deterministic nature does not

guarantee the rebuild is the most optimal solution [20].

Alternatively, SDN guarantees fault tolerance by having an accurate global topol-

ogy. When a link fails in a SDN environment, the controller can immediately establish

optimal new flows for all connections affected by the fault.

2.4.4 Dynamic Service Bandwidth.

Bandwidth throttling is a current network practice designed to place limitations

on the data capacity of certain services. For example, a company may allocate a

maximum of 15% of their total bandwidth for File Transfer Protocol (FTP) traf-

fic, 25% for VoIP traffic, and so forth. Even large cellular providers like T-Mobile

automatically throttle bandwidth demanding video streaming traffic down to 480p

resolution quality [21]. These throttles are strict boundaries manually configured at

the currently coupled data/control plane. A consequence of bandwidth throttling is

the lack of flexibility and utilization efficiency. The system is difficult to change and

often results in unused bandwidth.

SDN offers the flexible and efficient solution of dynamic service bandwidth. This

can meet the changing demands of a company’s network as it grows, adds services,

and responds to certain events. Additionally, bandwidth requesting becomes pos-

sible, where a traffic engineering server (possibly integrated into the NOS) receives

bandwidth requests from applications. This reactive model presents a new concept

of “on-demand” networking, where the network shapes itself based upon endpoint

devices, considering their roles and needs.

17

www.manaraa.com

Furthermore, Eli Etherton presents a possible use case of this dynamic control as

an emergency alert system [22]. At the push of a button, SDN can shift all internal

bandwidth to deliver pertinent emergency information, possibly allowing real-time

high definition streaming to all end users of emergency notifications and instructions.

Current networks would choke under QoS and divisional constraints, but SDN’s adap-

tive abilities can overcome those limitations.

2.4.5 Current Research Areas.

SDN is still in the early stages of adoption and standardization. However, there

are some themes in current research areas [1].

• Scalability: Partitioning and replicating the controller state to segment man-

agement as networks grow [23].

• Testing and Debugging: Since the network depends on the execution of a

program, bugs can be introduced. There is a need for testing techniques specific

for controller applications [24].

• Network Function Virtualization (NFV): Moving current application layer

services (DHCP, DNS, etc.) to layer 3 network services [25].

• Migration: Implementing hybrid deployment environments to ease the transi-

tion into a full-scale SDN replacement [26].

• Software-Defined Environments (SDE): Combining SDN with software-

defined storage, software-defined computation, and software-defined manage-

ment [27].

• Security and Dependability: Using technologies to improve resiliency and

mitigating unrealized security threats on the control platform [28] [29].

18

www.manaraa.com

This research looks at the themes of Security, Dependability and NFV by moving

network security services closer to the network controller.

2.5 Security

While research and experimentation continue to develop with SDN, security con-

tinues to be a top priority. The ability to view network status in real-time and

programmatically control network behavior is a two sided coin: it opens new avenues

of attack vectors for malicious users, but also grants the possibility of providing fur-

ther software-based security services. Ali et al divide current SDN-based security into

two categories: protect the network or provide security as a service [30].

2.5.1 Attack Vectors.

There are three new attack vectors introduced in an SDN environment [31]:

1. Controller: As mentioned earlier, pulling the network intelligence to a single

system naturally makes the controller a high profile target. If the NOS is

compromised, the forwarding devices it controls will be affected as well.

2. Southbound Interface: This is an interesting attack vector because it takes

advantage of the fact that control messages must now occur between devices

and the controller. If this OpenFlow communication is not sent over a secure

channel, malicious users may be able to apply traditional techniques such as

spoofing and man-in-the-middle (MITM) attacks to issue their own commands

to switches and/or routers.

3. Flow Entries: Since flow rules are established at the management level, there

may be errors in policy and decision making. Therefore, attackers may at-

tempt to reverse engineer the flow tables and pinpoint weaknesses in the actual

19

www.manaraa.com

implementation.

Additionally, a security assessment of the OpenFlow protocol presented a number

of issues. The STRIDE methodology [3], summarized in Figure 5, identifies different

attacks, examples, as well as their properties in reference the Confidentiality, Integrity,

and Availability (CIA) triad [32].

Figure 5. Possible attacks on OpenFlow enabled networks [3]

2.5.2 Securing Using SDN.

Despite the introduction of new attack vectors, SDN also provides the ability to

build application-level security for an entire network. The first direction of security

mitigation efforts focuses on threat detection, remediation, and verification using

SDN.

As examples, the controller may be able to infer a Denial of Service (DoS) attack

from the internal network state, and respond by dynamically reprogramming the de-

vices at gateway locations to drop the malicious traffic flow. RadWare has developed

DefenseFlow [33], a commercially-available SDN application that does exactly this.

DefenseFlow instructs the controller to collect statistics on traffic flow at a per second

resolution, establishing baseline measurements to detect any patterns of suggestive

DoS attacks.

Dealing with threat remediation, the only possible response in traditional net-

works is to drop the offending the traffic. SDN, however, with its real-time program-

20

www.manaraa.com

ming ability, gives a richer set of dynamic responses, including “emergency alarms,

dynamic quarantine solutions, traffic redirection for forensics, and entrapment mech-

anisms such as tarpits and honeypots” [30]. For instance, the FRESCO Application

layer prototype, propose by Shin et al, provides a Python scripting API that allows

programmers to develop reusable flow rule configuration modules. These modules are

overseen by FORTNOX, a specialized security enforcement kernel supplement in the

controller. Using FRESCO, the authors built Reflector Net, an application that de-

tects and reroutes malicious scanners to isolated honeynets [34]. That traffic can then

be dissected, promoting defense intelligence, instead of being immediately dropped

at the network perimeter.

SDN can also provide subscription-like security, enabling services such as anonymiza-

tion, enhanced trust, and remote management. AnonyFlow is a service that theo-

retically allows an Internet Service Provider (ISP) to dynamically and temporarily

assign IP addresses and flow-based identifiers to their customers [35]. This would al-

low ISPs to mimic hierarchical network address translation (NAT) for entire regions

or sub-regions.

SDN can also be utilized to secure data offloading from mobile and Bring-Your-

Own-Devices (BYOD). There may exist a need to offload sensitive data from these

devices for further processing, sharing, or archival. Enterprise-Centric Offloading Sys-

tem (ECOS) is an enterprise-wide solution, enabling a SDN controller to negotiate

with mobile applications on data offloading, encryption feasibility, privacy require-

ments, and more [36].

2.6 Intrusion Detection Systems

In [37] Kizza describes the fundamentals of network intrusion detection and pre-

vention. An intrusion is defined as a deliberate attempt, successful or not, to break

21

www.manaraa.com

into, access, manipulate, or misuse some valuable property. The Department of De-

fense (DoD) is responsible for an extensive amount of valuable property, in the form

of national intelligence, personnel files, and any other classified information.

To protect this data, one or many Intrusion Detection Systems (IDS) are used to

detect unauthorized intrusions into a network. Historically, Network-based Intrusion

Detection Systems (NIDS), like SNORT [38], have been used to monitor network

traffic from an external, passive perspective. Port mirroring is often utilized to submit

network traffic to an IDS, which will then perform an anomaly and/or signature-based

analysis.

However, recent studies [39] [40] [41] have shown that information misuse is more

abundant within organizations, possibly from the modern proliferation of phishing and

social engineering attacks. To address this problem, security experts have proposed

local, internal inspections, known as Host-based Intrusion Detection Systems (HIDS).

This technique allows detection to occur at the endpoints, on individual hosts. This

research utilizes an HIDS framework introduced in Section 2.7.

2.6.1 Alert Generation.

HIDS use software to monitor specific logs on the target systems. There are three

models of generating alerts:

1. Anomaly-based detection: These systems compare network activity to a

fingerprint profile of “normal” activity. Any user behavior or system resource

usage that deviates from the norm may indicate an intrusion. Training datasets

are often used to establish the normal baseline.

2. Signature-based detection: These systems assume each intrusive activity

can be individually identified by a unique pattern or signature. They work by

22

www.manaraa.com

keeping an updated database of known malicious signatures and looking for

these in current network activity.

3. Hybrid detection: Because of the potential shortcomings in both anomaly

and signature based detection, a hybrid model combines both sources for alert

generation.

The HIDS in this research utilizes a hybrid model in generating alerts.

2.6.2 Incident Response.

While much time is spent optimizing intrusion detection and prevention systems,

there is little guidance offered for when an incident does occur. Network administra-

tors have to invest in building a custom incident response strategy; if this is weak, it

undermines the entire protection infrastructure.

The SANS institute suggests a simple tiered response and escalation procedure

for detected intrusions [42]:

• Level 1: “Unfriendly” but harmless activity, such as port scanning. The re-

sponse should be 1) record user/IP/domain of intruder, and 2) maintain vigi-

lance for future intrusions.

• Level 2: An unsuccessful, yet clear attempt to obtain unauthorized information

(password files, access restricted hosts, etc.). The response should be 1) research

the attack origin, 2) analyze results, and 3) identify intrusion method risks.

• Level 3: Serious or successful attempt to breach security. The response should

be 1) contain the intrusion immediately, 2) collect and protect information, 3)

eliminate related vulnerabilities.

23

www.manaraa.com

2.7 OSSEC: Open Source SECurity

OSSEC is an open-source HIDS platform capable of incident detection, response,

and information management. It functions in either a local or server/agent deploy-

ment and can provide host-based monitoring across Linux, Solaris, AIX, HP-UX,

BSD, Windows, Mac and VMware ESX systems. OSSEC is used by Internet Service

Providers (ISPs), universities, government agencies, and even large corporate data

centers (Atomicorp, Wazuh) as their primary HIDS solution [43]. AlienVault’s Uni-

fied Security Management (USM) subscription product also uses OSSEC in their core

functionality.

OSSEC helps customers meet file integrity monitoring, log inspection/monitoring,

and policy enforcement requirements by providing these key features [43]:

1. Log Analysis: OSSEC collects, analyzes, and correlates logs generated by

operating systems, applications, and devices. This feature covers PCI DSS

Section 10.

2. File Integrity Monitoring (FIM): Independent hosts can detect changes to

any file and provide alerts when changes occur. This feature covers PCI DSS

Sections 11.5 and 10.5.5.

3. Registry Integrity Checking: Similar to file integrity monitoring, agents can

run checks against system registry values and alert when changes occur. This

feature also covers PCI DSS Sections 11.5 and 10.5.5.

4. Host-based Anomaly Checking: OSSEC runs UNIX-based rootkit detection

scripts that can detect when a system is modified in a way matching common

rootkit methods. For example, it looks for the presence of hidden processes by

using getsid() and kill() to check if any pid is being used or not. If the pid

24

www.manaraa.com

is being used, but “ps” cannot see it, this likely indicates the presence of a

kernel-level rootkit or a trojaned version of “ps”.

5. Active Response: This feature allows OSSEC to take immediate action when

any specific (or generic) alert occurs.

Figure 6 shows OSSEC’s structure and delegation between the management server

and agents. Agents collect log files, command output, and maintain a small database

for file integrity checking. However, the server is responsible for analysis through

log decoding, archiving alerts, alerting through email, and initiating active response

scripts.

Figure 6. OSSEC architecture [4]

OSSEC has an extensive code-base with active community development. It comes

with hundreds of log decoders in a default installation and is customizable to ad-

25

www.manaraa.com

ditional applications. Additionally, it offers the flexibility of “agentless” monitoring

for systems such as routers, firewalls, etc. This feature allows it to stack intrusion

detection power with other network-based products like SNORT while maintaining a

centralized management architecture.

2.8 Advanced Message Queuing Protocol

Enterprise developers adopted Message Oriented Middleware (MOM) because of

the desire for flexible communication while remaining reliable and secure. MOM

allows efficient message delivery between applications on heterogeneous systems, ef-

fectively bypassing the expensive use of explicit connections like Virtual Private Net-

works (VPNs). Usually, this is accomplished with asynchronous message delivery

through a queue framework directly on the MOM middleware. The Advanced Mes-

sage Queuing Protocol (AMQP) aspires to define MOM, and has been widely adopted

as an open standard for “business messaging” [44].

AMQP originated in 2006 due to the demand of interoperability within the finan-

cial services industry [45]. It was developed as a binary, wire-level protocol, meaning

the message format is strictly machine-readable as a stream of octets [46]. Its ubiq-

uitous and pervasive nature allows AMQP to be highly scalable, proving itself as a

high performance, fault-tolerant, and lossless messaging infrastructure. Security and

message integrity is implemented through mutual authentication and the Transport

Layer Security (TLS) encryption scheme. Figure 7 displays how AMQP relies upon

a publish-and-subscribe model, consisting of three primary components:

• Publishers: Clients generating the messages

• Broker: A server or daemon program containing an exchange, one or more

routing engines, and message queues

26

www.manaraa.com

• Consumers: Clients consuming one or more messages from the queue(s) on

the broker

Figure 7. AMQP architecture [5]

2.8.1 Brokers.

The broker’s role is to receive messages from the publisher applications and route

them to the appropriate consumer. This transfer is first accomplished using an ex-

change module, which acts as a mailbox for any incoming messages. Exchanges then

copy and distribute the message to outbound queues using binding rules. The ac-

tual delivery is initiated by the broker if the consumer is subscribed to the queue, or

consumers can fetch/pull messages at their discretion.

As a programmable protocol, AMQP routing is defined at the application layer,

then executed at the network layer. As a result, it is possible to build a scalable

broker topology using a k-nomial tree scheme, varying in both depth and breadth

[47]. While this only applies to a disjoint federation architecture, custom topologies

can meet the routing needs of the target system.

27

www.manaraa.com

2.8.2 RabbitMQ.

RabbitMQ is an open-source middleware, specifically acting as a message broker

and queuing server. It supports many messaging protocols, including AMQP. In a

multi-broker model, RabbitMQ can either be clustered together (forming a single, log-

ical broker) or loosely connected through federation or tree structures. Additionally,

it is officially supported on several operating systems and programming languages,

including Java, Python, and C/C++ [5].

2.9 Related Research

This research aims to assist in the intrusion response process by utilizing SDN

and HIDS together in a harmonious system with efficient message passing. Figure 8

illustrates Michael Todd’s Dynamic Security Control using SDN (DSCS) system pro-

posal and how these can work together to provide an immediate response to actively

quarantine potential intrusions. HIDS monitors the critical end systems, generating

alerts which are passed to the AMQP Broker. A SDN controller subscribes to these

alerts, and a network application interacts with the Northbound API in response to

the alert. All of these components working together results in dynamic and automated

flow table updates which monitor, isolate, and block security policy violations.

The limitations of Todd’s previous work have been quantified, and this research

seeks to mitigate shortcomings and expand functionality in the following ways:

• The use of Floodlight’s stateless firewall could not interrupt active connections

if they were found malicious. This research seeks a viable solution.

• The DSCS system was not interfaced with an actual IDS. This research seeks to

use industry standard software (e.g., OSSEC) and its APIs to generate alerts.

• A database schema could be incorporated to allow alert sharing and archival

28

www.manaraa.com

tracking, meeting standard logging policy requirements and improving scalabil-

ity.

• Different approaches to intrusion response (firewall updates, first hop modifi-

cations, honeypot redirection, etc.) can be tested for performance, efficiency,

and/or latency.

• The AMQP publisher/broker model can be replaced with a similar messaging

design within a Security Incident Management (SIM) or Security Information

and Event Management (SIEM) product.

• The programmability of the AMQP protocol can be replicated in a SDN en-

vironment because routing decisions are defined outside the network layer of

packet forwarding devices.

Figure 8. Dynamic Security Control using SDN (DSCS) process [6]

29

www.manaraa.com

2.10 Conclusion

This chapter explains SDN’s differences between basic networking and its his-

torical development. It describes the fundamental components of SDN’s framework,

and presents use cases of how it can help improve network capabilities. Lastly, it

explores both the security liabilities and potential security applications that SDN

could provide. The critical, legacy-style role of network architecture may make SDN

a slow adopting technology, but the flexibility of dynamic programming proves itself

priceless.

30

www.manaraa.com

III. AHNSR Design

3.1 Overview

This research introduces the Active Host-based Network Security Response (AHNSR)

framework, a redesign of the DSCS process discussed in Section 2.9. This chapter

provides a detailed description of each component in the AHNSR system and its role

in the experiment. In understanding the key technologies in SDN, the four main com-

ponents of this new system under test can be defined: agent, OSSEC, flow profile,

and the SDN controller. The interface between OSSEC and the SDN controller is a

novel contribution that enables a well-vetted, open-source HIDS platform for generat-

ing security events. A testable SDN-controlled network is constructed with multiple

hosts, OpenFlow enabled switches, and a Floodlight controller, all linked to the novel

interface for the HIDS framework.

3.2 System Summary

Figure 9 displays a simplified network diagram of all components described in the

AHNSR design: SDN controller, OSSEC server, switches, and workstation agents.

The boundaries are limited to these components, and do not include other services

normally present in an enterprise network. However, as discussed later in Chapter

4, the test network does attempt to more accurately represent a real-world network

by utilizing physical switches instead of virtual switches. Therefore, all Ethernet

communication (including OpenFlow) between any two hosts are physically trans-

mitted through independent network interface cards instead of residing within the

same virtual bridge.

Figure 10 provides a high-level view of the AHNSR system, describing the inter-

action between each component. The process follows this cycle:

31

www.manaraa.com

Figure 9. Network diagram of AHNSR components

1. Individual agents register and connect with the OSSEC server during deploy-

ment/configuration in a Software-Defined Network. While connected, OSSEC

continually monitors the agents using multi-log analysis, rootkit detection, and

file integrity checking. Based on rule-sets and threshold levels that represent

the enterprise IT policy, security alerts are generated when an event occurs on

any monitored agent.

2. The OSSEC server decodes, analyzes, and determines the appropriate active

response to protect the network.

3. A custom active-response script then interacts with a secure REpresentational

State Transfer (REST) API of the SDN controller in order to request flow entries

be pushed to network switches.

32

www.manaraa.com

4. The SDN controller then communicates via OpenFlow channels to the physical

switches

5. These switches, in turn, accept the flow tables updates which ultimately isolate,

block, or redirect traffic.

Figure 10. AHNSR system design

3.3 SDN Controller

The SDN controller is implemented using the master branch of open-source Flood-

light project (commits made up to 23 September 2016), using a Java 1.8 compatible

update. Figure 11 shows the relationship among the Floodlight controller, the ap-

plications built as Java modules within Floodlight, and the applications built over

33

www.manaraa.com

the Floodlight REST API [7]. Internally, the Floodlight controller contains a set of

common functionalities that control and inquire about an OpenFlow network, while

applications on top of it utilize different features to solve user needs throughout the

network.

Figure 11. Floodlight architecture and module interaction [7]

Upon execution, Floodlight and its set of Java module applications (those loaded

in the Floodlight properties file) begin their services. The REST APIs exposed by

34

www.manaraa.com

all running modules are available via the specified REST port (8080 and 8081 for

HTTP/HTTPS, respectively). These modules allow the normally-abstracted OSSEC

server to also function as a pseudo-REST application, and can retrieve information

by invoking services through JavaScript Object Notation (JSON) constructed com-

mands/requests sent to the controller REST port via HTTP/HTTPS. This request

is demonstrated in Section 3.4.4, OSSEC’s SDN response.

This research selectively utilizes Floodlight’s StaticFlowEntryPusher, ACL (Ac-

cess Control List) and Firewall Java module applications. These modules allow the

AHNSR system to control flows at a very fine level, bypassing some limitations in

previous related work. For example, active malicious connections can be immediately

terminated by forcing the switch to create a new static flow, consequentially dropping

those packets. However, these modules operate differently – the Firewall module uses

reactive flow entries while the ACL and Static Flow Entry modules use proactive flow

entries.

3.3.1 Reactive/Proactive Flow Entry.

Figure 12 illustrates the difference between reactive and proactive operations. The

Firewall module is designed reactively, meaning the switch must ask the controller how

to handle new packets. After receiving the switch’s OpenFlow PACKET IN message,

the controller triggers the Firewall module. This module operates by comparing each

incoming PACKET IN message against its pre-configured allow/deny list from the

highest priority until either a match is found or the list is exhausted. If a match is

found, the rule’s action (ALLOW or DENY) is stored in a IRoutingDecision object

to be passed on to the rest of the packet-in processing pipeline, which normally ends

with the default Forwarding module. The forwarding module then reactively inserts

flows in switches, effectively routing packets from the source to its destination.

35

www.manaraa.com

Figure 12. Reactive vs. proactive Floodlight modules

Alternatively, proactive flow entries are sent by the controller before the switch

handles incoming packets. This requires a single OpenFlow FLOW MOD message –

then all subsequent matching flows are automatically forwarded at line speed.

Both reactive and proactive methods are used in this research as they are inde-

pendently executed by the Java application modules.

3.4 OSSEC Configuration

OSSEC is installed in a server/agent architecture, where agents communicate with

a server for centralized analysis. The server and Linux agents are running OSSEC’s

pre-release of version 2.9 (v2.9.0 RC3), while the Windows workstations are running

OSSEC version 2.8.3 (the latest version available for Windows clients). Figure 13

provides a high-level view of the agent/server log flow and the various processes

handling each action:

1. Agents are responsible for log collecting using the ossec-logcollector process.

New log entries are forwarded to the server securely via UDP port 1514 using

36

www.manaraa.com

messages encrypted with the blowfish algorithm and compressed using zlib [48].

This network communication is handled by the agentd and remoted processes,

located agent-side and server-side respectively.

2. The server’s ossec-analysisd process decodes the log using regex parameters,

determines the format, then matches it to any defined rules.

3. The server’s ossec-dbd process is responsible for storing alerts into a database,

while the ossec-execd process executes any active-response actions that may be

necessary for the corresponding alert.

Figure 13. OSSEC log flow in a server/agent architecture

3.4.1 Agents.

Since the agents are responsible for monitoring log files, the experiment uses a

simplified, consolidated adaptation to simulate security events logged to various places

on the workstation. During configuration, an empty plain-text file is created on

each agent, representing a no-noise syslog file. In order to have each agent’s ossec-

logcollector process actively monitor the experimentation log, this research includes

a localfile element pointing to the local experimentation log. The format is specified

as syslog – a generic format which parses one log per line.

37

www.manaraa.com

3.4.2 Decoder/Rules.

Log rules are stored internally on the server in an eXtensible Markup Language

(XML) tree structure, independent of the initial log format. For AHNSR experiments,

this research constructs a custom decoder and ruleset to simulate security events by

adding the following construct to /var/ossec/etc/decoder.xml on the OSSEC server:

1 <decoder name="experiment1">

2 <prematch>^experiment1</prematch>

3 </decoder>

4 <decoder name="experiment-alert">

5 <parent>experiment1</parent>

6 <regex offset="after_parent">^an event occurred. LEVEL=(\d+)

ID=(\d+)</regex>

7 <order>extra_data, id</order>

8 </decoder>

This decoder successfully consumes any logs with the pattern “experiment1: an

event occurred. LEVEL=# ID=#” Decoders provide a way to extract field data

from the message to be used in context - this decoder utilizes this by extracting the

level information and storing it as extra data variable. The fields are described as

follows:

• Level: This is a threat severity level index used internally in the OSSEC IDS

framework. Every rule is classified from the lowest threat (00) to the maximum

level (15). The descriptions for each level are provided in Appendix M.

• Log ID: This is the log ID generated by the agents when they write a new

line to the log file. It is used for message tracking during the tests.

• Alert ID: This is a unique identifier assigned by OSSEC for every alert it

generates. The number also acts as the primary key for the alert database

described in Section 3.4.5.

38

www.manaraa.com

Once a log is decoded to a specific format, rules can be applied toward the ex-

tracted information. For example, a Secure Shell (SSH) rule may extract the source

IP address when a decoder identifies the format of a failed authentication log - which

means it can use that information in generating an informative alert for administra-

tive action. For this experiment, decoding should match the simulated security level

to the alert level, so the following rules are constructed on the OSSEC server, in the

/var/ossec/rules/ossec rules.xml file like so:

1 <group name="experiment1">

2 <rule id="109000" level="0">

3 <decoded_as>experiment1</decoded_as>

4 <description>custom experiment alert</description>

5 </rule>

6 <!-- Alert for level 1 -->

7 <rule id="109001" level="1">

8 <if_sid>109000</if_sid>

9 <extra_data>1</extra_data>

10 <description>Level 1</description>

11 </rule>

12 <!-- Alert for level 2 -->

13 <rule id="109002" level="2">

14 <if_sid>109000</if_sid>

15 <extra_data>2</extra_data>

16 <description>Level 2</description>

17 </rule>

18 ...

19 <!-- follow for levels 3 to 15 -->

20 ...

21 </group>

A parent group is established to hold all related rules. As a “catch-all” bucket,

if a log is decoded as the experiment format, it is first flagged to match rule 109000.

This initial match immediately eliminates all other rule formats except those with a

corresponding if sid element. The if sid field requires a rule to be flagged as another

rule first, in this case rule ID 109000. Additional rule-level combinations can be

included for increasing level values. This way, the system can efficiently emulate rule

threat level promotion or demotion depending on the context of the actual log.

39

www.manaraa.com

For example, Figure 14 shows OSSEC’s log-test output, a testing/verification tool

that decodes exactly how the real ossec-analysisd process does. This illustrates three

phases when decoding the sample log:

Jan 11 15:20:17 ossec logger: EXPERIMENT1: an event occurred. LEVEL=14 ID=1

Figure 14. Decoding phases for sample log entry

• Phase 1: The text is recognized as a generic syslog entry, which follows

this format: [<date> <time> <hostname> <program name>: <--log-->].

Therefore, it first pulls off the hostname and program name fields.

• Phase 2: OSSEC finds the correct decoder for the program’s actual log entry.

In this case, the custom experiment1 decoder is selected due to the regex pre-

match on the text “experiment1”. This decoder also recognizes the content of

the two other fields, extra data (the visible place-holder for the alert level), and

id (Log ID, not Alert ID).

40

www.manaraa.com

• Phase 3: A rule assignment is the last step. OSSEC searches the XML tree,

and can match on rule 109014 as the following elements were true:

<decoded_as> = experiment1 and <extra_data> = 14

Addtionally, this rule ID has a threat severity level of 14, matching the log-test

output in Figure 14.

3.4.3 Active Response.

Active response is technically separated into two elements within the OSSEC

system: commands and configuration. A command simply provides a symbolic link

to the actual executable and can specify expected parameters for a given script. This

experiment defines the SDN-response command in /var/ossec/etc/ossec.conf on the

OSSEC server:

1 <command>

2 <name>SDN-response</name>

3 <executable>SDN-response.sh</executable>

4 <expect></expect>

5 </command>

While the executable does expect the alert level value (extracted as extra data

during decoding), the expect tags are left empty here because the only valid options

are srcip and username. The SDN-response script can still pull the value through the

default parameters forwarded, as shown in the Section 3.4.4.

However, the command alone is not enough to define an active response. In the

configuration (Appendix C), the commands are binded to events defined within their

own active-response element as shown:

1 <active-response>

2 <command>SDN-response</command>

3 <location>server</location>

4 <rules_group>experiment1</rules_group>

5 </active-response>

41

www.manaraa.com

The command is used to link the response to the executable’s symbolic link above.

Location is where the command should be executed (alerts can be designed to trig-

ger executables residing on either the server or the agents themselves). Lastly, the

rules group is essential, as any alert generated from this rules group will execute the

response. The experiment has all rules defined under the experiment1 group in the

rules.xml described in Section 3.4.2; thus, the single group identifier can be referenced

here.

3.4.4 SDN Response.

The active response scripts utilize the RESTful interface to the SDN controller in

order to request changes to the network. The essential core curl command format in

the scripts is:

1 curl -X POST -d ’{

2 "switch": "00:00:00:00:00:00:00:01",

3 "name":"flow-mod-1",

4 "cookie":"0",

5 "priority":"1",

6 "eth_type":"0x0800",

7 "in_port":"1",

8 "active":"true",

9 "actions":"output=2"

10 }’

11 http://10.231.0.10:8080/wm/staticflowpusher/json

This constructs a JSON string, and sends it to the controller (at IP=10.231.0.10

in this experiment) on the port where its REST services are running (8080) via

HTTP POST. This particular request is sent to the StaticFlowEntryPusher module,

which allows a user to manually insert proactive flows and groups into an OpenFlow

network. The command above requests a new flow for a particular switch, which

applies to all packets with eth type of 0x0800. This relates to the two-octet EtherType

field in an Ethernet frame, of which 0x0800 defines IPv4. In summary, this request

generates a new flow on the switch with a Media Access Control (MAC) address of

42

www.manaraa.com

[00:00:00:00:00:00:01], directing all IPv4 traffic coming into port 1 to output on port

2. The full SDN-response.sh script is included in Appendix F.

Normally, switches must request how to handle new traffic via a PACKET_IN Open-

Flow message sent to the controller – but as a proactive flow, no additional requests

are required to handle subsequent traffic that matches this flow.

3.4.5 Database.

OSSEC database output is enabled with a make command during OSSEC server

compiling and installation. The database is managed through the ossec-dbd process

on the server, which inserts logs, agent and server information into a MySQL database

on the same machine. This schema’s Enhanced Entity Relationship (EER) diagram

is shown in Figure 15, illustrating the system properties and relationships.

Notable mentions in the EER diagram include:

• The alert table includes the rule id associated with the alert.

• The alert table contains foreign keys to the location where the log originated,

as well as the server ID handling the alert.

• Timestamps upon entry addition are included, which can be used to validate

OSSEC processing when comparing to the log generation timestamp.

3.5 Security

AHNSR is a privileged system with unique network control, and therefore requires

a strong security design. The attack vectors discussed in Section 2.5.1 reveal how the

STRIDE methodology (Spoofing, Tampering, Repudiation, Information disclosure,

Denial of Service, Elevation of privilege) relate to any Software-Defined Network.

This research helps implement these security properties as follows:

43

www.manaraa.com

Figure 15. EER diagram of OSSEC database

• Authentication: All critical systems are fully authenticated by standard PKI

(Public Key Infrastructure) using Secure Sockets Layer (SSL) encryption. Pri-

vate keys are generated on the Pica switch, Floodlight, and OSSEC using the

native OpenSSL library, and their self-signed certificates are manually installed

on the corresponding partner systems. The Floodlight controller is configured

to support only trust-based SSL for both its OpenFlow connections and REST

API server. These channels operate independently with separate Java keystores,

so settings in one module do not impact the other (Appendix E). As a result, all

curl requests to Floodlight by OSSEC must include this custom public/private

44

www.manaraa.com

key format, and redirected to the secure HTTPS port:

1 curl

2 --cacert /rest-cacert.pem

3 --cert /ossec-selfsigned.crt

4 --key /ossec-selfsigned.key

5 -X POST -d ’{

6 "switch": "00:00:00:00:00:00:00:01",

7 "name":"flow-mod-1",

8 "cookie":"0",

9 "priority":"1",

10 "eth_type":"0x0800",

11 "in_port":"1",

12 "active":"true",

13 "actions":"output=2"

14 }’

15 https://10.231.0.10:8081/wm/staticflowpusher/json

• Confidentiality: OpenFlow TCP traffic is executed through “out-of-band”

management, meaning a dedicated, isolated management port on each switch

communicates directly to Floodlight, and therefore sniffing is not possible with-

out switch access. Similarly, a dedicated bridge on the server allows OSSEC to

communicate with Floodlight on a dedicated channel. However, by nature of

the authentication mechanisms above, OpenFlow traffic is encrypted via SSL

Public Key Infrastructure (PKI) and communication to the REST server is

encrypted via HTTPS. Furthermore, OSSEC host log messages are encrypted

using the blowfish algorithm and compressed using zlib, utilizing private keys

installed during initial host configuration.

• Integrity: By default, Floodlight confirms successful connections with switches

using the Openflow 1.4 Hello sequence of HelloElements [49]. OSSEC also at-

tempts to prevent falsification and replay attacks using message counters within

the encrypted payload. All OSSEC configuration files on workstation hosts are

also added to the syscheck real-time monitor list for immediate alerts on alter-

cation.

45

www.manaraa.com

• Availability: Floodlight is a robust controller that can maintain 100% uptime

under normal load. Additionally, OSSEC has a real-time statistics module that

learns average message load, and can trigger custom alerts when a threshold

is crossed, possibly indicating a denial of service attack. Therefore, even if a

compromised host attempts to flood OSSEC’s UDP receipt queue on port 1514

with legitimate logs, an active response is configured to block the offending host

if an “Excessive Events” rule fires.

3.6 Complete AHNSR Response Flow

Figure 16 illustrates the complete detailed AHNSR framework, putting together

all the components described in this section. The green line represents the response

flow between and within each component, starting at log generation on the agent.

The new entry is collected by the logcollector daemon and forwarded to the OSSEC

server through the agentd/remoted communication pipeline. OSSEC’s three analysis

phases are included and a matching rule results in both database archival and ex-

ecuting the SDN-response.sh script. This queries Floodlight’s REST API, invoking

services published by its Java modules applications. These modules interact with the

core internal services responsible for OpenFlow communication to the switches. The

request is received by the switch resulting in the successful flow table update.

3.7 Design Summary

This chapter describes the individual components of the AHNSR system. The

design is an advanced approach to automate network reconfiguration in reaction to

security policy violations at user workstations.

46

www.manaraa.com

Figure 16. Response flow through agent, OSSEC, Floodlight, and switch

47

www.manaraa.com

IV. Methodology

4.1 Problem/Objective

This research seeks to expand on Todd’s Dynamic Security Control System (DSCS),

a process of utilizing SDN with host-based security alerts [6]. The limitations of

Todd’s work in this area have been quantified, and this research seeks to mitigate

shortcomings and expand functionality in the following ways:

Limitation Mitigations

• The use of Floodlight’s stateless firewall could not interrupt active connections

if they were found to be malicious. This research seeks a viable solution.

• The DSCS system was not interfaced with an actual IDS. This research seeks

to use industry standard software (OSSEC) and its APIs to generate alerts.

Improvements

• A database schema is incorporated to allow alert sharing and archival tracking,

meeting standard logging policy requirements and improving scalability.

• Different approaches to intrusion response (firewall or access control list up-

dates, first hop modifications, honeypot redirection, etc.) are allowed for more

dynamic control.

• The AMQP publisher/broker model can be replaced with a similar messaging

design within a Security Incident Management (SIM) or Security Information

and Event Management (SIEM) product.

• The programmability of the AMQP protocol can be replicated in a SDN en-

vironment because routing decisions are defined outside the network layer of

packet forwarding devices.

48

www.manaraa.com

After redesigning the process, this research introduces Active Host-based Net-

work Security Response (AHNSR), which implements the functionalities listed above.

Therefore, this experiment functions more as an evaluation, testing how the AHNSR

system performs under both normal and stressed loads. The evaluation results will

help inform administrators of optimal configuration settings and set a quantifiable

upper limit for how many agents they can support. As an overall efficiency standard

objective of maintaining a less than 2 second delay in responding to new log entries,

the limit can be determined in statistical trends as network load increases.

4.2 System Under Test

Figure 17 displays the System Under Test (SUT) and Component Under Test

(CUT) diagrams. The workload factors consist of SDN response method and an Event

Per Second (EPS) level, described in Section 4.4. Section 4.5 discusses the computing

parameters, which are held constant. The targeted components consist of the agents’

log collection, OSSEC’s analysis/execution performance, active response script, and

Floodlight’s REST API. Recorded metrics, described in Section 4.3, consist of Central

Processing Unit (CPU) utilization, response time, and the percentage of successful

alerts generated.

Agents and servers are segmented on a SuperMicro SuperServer X9QR7-TF+

with 16 Xeon E5-4610 v2 processors, eight 1000BASE-T network interface cards, and

512GB of RAM. Figure 18 shows how the server (labeled as Aberdeen2) contains the

following guest Virtual Machine (VM)s: Linux Ubuntu 14.04 guests are assigned two

cores, 8GB of RAM, and run the OSSEC Agent process to register and connect as

agents to the OSSEC server. Floodlight runs on a XUbuntu virtual machine with

8GB RAM and is assigned two processors. The OSSEC server runs on Ubuntu 14.04

64-bit Server (Linux 4.2.0-27), also with 8GB RAM and is assigned two processors.

49

www.manaraa.com

Figure 17. System Under Test (SUT) and Component Under Test (CUT)

All guests have shared access to 1000BASE-T Network Interface Card (NIC)s on a

dedicated virtual bridge and all traffic is switched through a PICA manufactured

switch. The PICA switch is a P3290 model, updated with the latest PicOS (2.7.1)

with OpenFlow 1.4 support. The Floodlight controller utilizes out-of-band man-

agement to the PICA switch on an independent subnet (10.231.255.255), essentially

providing a dedicated OpenFlow channel.

4.2.1 Assumptions.

The following assumptions are understood when designing and executing experi-

ments for the AHNSR system:

1. The framework is dependent on well-configured host auditing and logging poli-

cies, as well as appropriate rule definitions on the management server.

2. Triggers and definitions are limited by the features provided by OSSEC version

2.9 RC3. More specifically, alert triggers are limited to system log analysis,

50

www.manaraa.com

Figure 18. Advanced network diagram between server and switch

application log analysis, connection status, rootkit signature detection, selective

registry changes, and/or selective file changes.

3. Rule definitions are limited to the following: alert level, specific rule ID, event

frequency, maximum size, time frame, category, source IP, destination IP, user-

name, hostname, program name, URL, and/or matching regex parameters.

4. The Floodlight controller has out-of-band management to all switches in the

network. If this is not true, it does not ensure dedicated OpenFlow channels

that may become congested otherwise, which can invalidate the observed results.

5. All switches must support OpenFlow 1.3 or higher, as some response modules

require features in these versions.

6. A pre-configured flow is utilized for proactive forwarding to the IDS server.

This is important for the UDP log message forwarding between the agents and

server.

51

www.manaraa.com

7. The OSSEC server can connect to Floodlight through a physical or virtual

bridge. This research uses virtual switching with VMware’s ESXi hypervisor.

4.3 Metrics

The stated system objectives are the primary influence in determining suitable

performance metrics. As such, there are three main questions that help consider the

overall performance of the AHNSR system in any given state. In relation to each

question, a metric (or response variable) is adopted for experimentation:

1. As workload increases, are any new logs failing to be processed?

Metric - Alerts Generated (AG): Since the incoming logs are controlled,

and each log should generate an alert, the AG metric can accurately measure

if any logs were not processed. The AG metric can be expressed as the simple

ratio measurement

AG =
SR

LG
(1)

where LG represents the number of logs generated and SR represents the number

of successful responses registered by the AHNSR system.

2. How long does it take for AHNSR to reconfigure the network through flow table

updates?

Metric - Response Time (RT): The time from event generation to flow

table update. RT requires high resolution timing, and its specific measurement

implementation is discussed in further detail in Section 4.6.5.

3. How much CPU utilization on the main server components (OSSEC and Flood-

light) is occurring during a given workload?

52

www.manaraa.com

Metric - Central Processing Unit (CPU): Both servers allow the user to

query the system monitoring services to retrieve and log current CPU utilization

information. CPU utilization is measured using the Linux mpstat package,

which provides reports on the global average activities among all processors [50].

Both OSSEC and Floodlight execute # mpstat 1 10 upon each experiment’s

starting trigger, which provide ten reports at one second intervals of the system’s

combined user and system level utilization. Thus, the utilization metric can be

expressed as

CPU = 100−%idle (2)

where %idle is the percentage of time when the CPUs are idle and the system

does not have an outstanding disk I/O request.

Table 1 defines each metric’s units of measurement, accepted range value, and

expected range value.

Table 1. Performance metrics

Metric Units Accepted Range Expected Value

AG (Alerts Generated) numeric
0 to n,

n = # logs generated
n

RT (Response Time) µs 0 to ∞ < 2 x 106 µs

CPU utilization % 0 to 100 Servers: < 80%

4.4 Experiment Factors

Table 2 describes the experiment factors that are considered while developing the

AHNSR framework.

53

www.manaraa.com

Table 2. Experiment factors

Factor Type Description

Event density continuous
How many Events Per

Second (EPS) are being
generated

Log-Only active response
status

binary
Status of log only active

response on server
(running/not running)

Firewall active response
status

binary
Status of firewall active

response on server
(running/not running)

Access Control List active
response status

binary
Status of access control list
active response on server
(running/not running)

Static Flow Entry active
response status

binary
Status of static flow entry
active response on server
(running/not running)

Event density is the primary factor, and is the main treatment in the experiment.

The binary parameters consist of the four main SDN response methods available by

Floodlight. Each method helps meet specific data security compliance requirements,

such as those outlined in PCI DSS 2/3.2 [10]. Additionally, the Access Control

List/Static Flow/Firewall modules are all capable of denying network access, which

is the principal incident response strategy for any intrusion. Therefore, this research

includes them as test factors to evaluate the most efficient and effective active re-

sponse method. Treatments described in Section 4.6 allow for any covariance analysis

described in Section 4.7.

54

www.manaraa.com

4.5 Experiment Parameters

Many computing parameters are held constant based on the experiment configura-

tion. This includes the component operating systems, resources (memory, CPU, and

disk space), script languages, and switch hardware. The networking configuration

established in the ESXi hypervisor remains constant as well. The tests run with the

same 10 agents (also with identical computing parameters) connected and registered

to the OSSEC manager.

Additionally, file integrity checking and rootkit detection are sub-functions pro-

vided by OSSEC (as discussed in Section 2.7), which may increase noise, latency,

and/or CPU utilization on the agents. Therefore, this research holds those pro-

cesses to a constant running state, helping evaluate for a worst-case scenario when

all OSSEC-provided processes are demanded to run with a heavy workload.

4.6 Experimental Design

4.6.1 Expected Load Level.

Log generation is the most significant contributer to system load, as each log must

process through the OSSEC workflow. In estimating average log generation, Solar-

winds describes a sample enterprise as 1000 employee endpoints, 10 switches/routers,

25 various servers, 4 firewalls, and 7 IPS/IDS [51]. Their estimate for this environ-

ment is a total of 363 EPS. Compensating for potential peak periods and configuration

variety, this research suggests an expected load of 500 EPS under normal operating

conditions for an average enterprise network.

It is also important to note the difference between basic alerts and “SDN Response

Demanding” alerts. Basic alerts are logs ignored or acted on without interaction with

the SDN controller. “SDN Response Demanding” alerts occur when OSSEC receives

55

www.manaraa.com

a log and determines it is important enough to request a network modification to the

SDN controller. Because threshold levels, enterprise needs, and SDN incorporation

all vary significantly, the experiment eliminates any gross estimations by assuming

all logs are “SDN Response Demanding”.

4.6.2 Treatments.

The planned experiment treatments are enumerated in Table 3. The columns

represent each of the three factors discussed earlier. Tests 1–4 evaluate the expected

operational load level whereas Tests 5–32 evaluate performance under extra load.

Before starting treatment tests, measurements are taken at a baseline control level

to gather data without external influence involved. This allows a relative level for

output metrics, especially the CPU utilization at a restful state.

Tests 5–32 provide data for evaluation against the alert density parameter. Group-

ing between [5–11], [12–18], [19–25], and [26–32] capture the effect of different active

response methods at increasing density levels. Tests 1–4 also capture these effects at

the expected normal operating load.

4.6.3 Testing Process.

Syslog events are simulated on the agents using a custom decoder and a consoli-

dated, monitored log file. Individual log threat levels are randomized when generated,

and processed through the AHNSR system accordingly. OSSEC’s MySQL database

keeps records of all non-ignored alerts, and active connection termination is enabled

through the manual StaticFlowEntry module. Timing processes are built into the

experiment at the agent (beginning), OSSEC server (middle), and Floodlight (end)

to provide automated, high resolution data of the primary response variable, RT.

Experiments are synchronously initialized using scripts across all agents.

56

www.manaraa.com

Table 3. Treatments

Test #

Events Per
Second
(EPS)
Levels

Log-Only Firewall
Access
Control

List

Static
Flow
Entry

(control) 0 off off off off

1 500 on off off off

2 500 off on off off

3 500 off off on off

4 500 off off off on

5-11
10, 100, 1000,
2500, 5000,
7500, 10000

on off off off

12-18
10, 100, 1000,
2500, 5000,
7500, 10000

off on off off

19-25
10, 100, 1000,
2500, 5000,
7500, 10000

off off on off

26-32
10, 100, 1000,
2500, 5000,
7500, 10000

off off off on

All experiments follow an identical testing process using automated scripts where

noted:

1. First, Floodlight is restarted. This clears out all flows, establishes a baseline

Java Virtual Machine (JVM) environment, and ensures connectivity with the

OpenFlow enabled switch.

2. The OSSEC server is restarted, resetting its statistics modules. An additional

reset script forces the server to clear its alert and active response logs.

3. The management start-experiment.sh script (Appendix B) is executed with

arguments that specify the test configuration (e.g., event density, response

method, number of trials, and number of agents). This script automatically

57

www.manaraa.com

calls and manages the following steps (4 through 10).

4. An agent configuration bash script (startLogger.sh) is passed to all agents via

listening Ncat sockets. Agents listen using # ncat -l -k 12346 > listen.sh

and the management VM pushes the configuration using

ncat 192.168.0.1XX 12346 < clientCommand.sh where clientCommand.sh

contains a call to the local log generation script with an EPS parameter.

5. The management VM pings all servers and agents to establish temporary flow

entries. This ensures proactive forwarding and a better synchronized start time

for the networked trigger activation.

6. The experiment is triggered from the management VM via Ncat listeners on the

OSSEC server and agents. Similar to step 4, agents have persistent listeners

as # ncat -l -k 12345 --sh-exec "./listen.sh" – Ncat’s sh-exec tag runs

a command by passing a string to a system shell [52]. The management VM

simply connects to all simultaneously by forking each as a background process:

ncat 192.168.0.1XX 12345 &

7. Once triggered, the agents begin generating the appropriate amount of logs

using the log generation script (Appendix A).

8. After the experiment completes, the management VM collects the OSSEC alert

and active response logs via Secure Copy (SCP).

9. Data is parsed and validated against the OSSEC database using dataParser.java

(Appendix G).

10. A consolidated data file in Comma Separated Values (CSV) format is pushed

to the results repository using drive, a terminal push/pull style Google Drive

client [53].

58

www.manaraa.com

4.6.4 Repeated Measures.

Each EPS level is equivalent to the aggregate log amount generated from all agents.

For example, the 500 EPS level is the result of a 50 logs entered on 10 disparate

agents. A two sample power t-test determines the appropriate number of samples

(in aggregate) to collect in achieving a 95% confidence interval within +−.02 seconds.

Using the highest standard deviation recorded during preliminary testing, .3667, the

power test suggests collecting 7065 samples (Appendix I). With this information, the

experiment designs an appropriate number of additional trials for each test, denoted

in Table 4.

Table 4. Repeated measures to meet minimum 7065 power sample size

Test # EPS Level Trials Total Samples

5,12,19,26 10 707 7070

6,13,20,27 100 71 7100

1,2,3,4 500 15 7500

7,14,21,28 1000 8 8000

8,15,22,29 2500 3 7500

9,16,23,30 5000 2 10000

10,17,24,31 7500 1 7500

11,18,25,32 10000 1 10000

4.6.5 Timing.

It is important to have accurate and high-resolution timing measurements in this

experiment because Response Time (RT) is the primary response variable. Therefore,

Figure 19 illustrates the timestamping workflow developed to record the response

59

www.manaraa.com

time for each new log. The QueryPerformanceCounter function is a kernel-level

operation that records a high resolution (< 1 µs) timestamp [54] – these can then

be used for time-interval measurements as the alert processes through the predefined

AHNSR workflow. Lastly, the SDN controller is responsible for recording the end

timestamp. This is accomplished using the native Linux command # date +%s.%N,

which records the number of seconds since the UNIX epoch began, along with the

nanosecond portion of the current system time.

Figure 19. Log and alert timestamping through the AHSNR system

Additionally, VMtools has an option for virtual machines to sync with the ESXi

server they are running on. The ESXi server includes Network Time Protocol (NTP)

60

www.manaraa.com

software and starts the ntpd service by default [55]. With all VM hosts connecting to

the ESXi NTP server, system time synchronization can occur. Both the beginning

and end timestamps can be compared against the MySQL timestamp artifact in the

“middle” of the process, which guarantees the validity of the other timestamps.

4.7 Statistical Analysis

A sample experiment, with n EPS, produces two data files for analysis: one

RT-data.csv and one CPU-data.csv. Figures 20 and 21 display a sample portion of

this data from a preliminary experiment with 500 EPS. All information necessary

for metric parsing and analysis is recorded in these files (such as timestamps, trial

numbers, mpstat output, etc.). Additional information, such as the individual alert

id and level (per agent), is also captured during database retrieval for potential trend

analysis. The maximum row index value also accounts for the AG metric, and should

be equal to eps× number of trials for a 100% success rate in a single experiment.

Figure 20. Sample RT-data.csv file

Figure 21. Sample CPU-data.csv file

After collecting data, a statistical analysis is performed using R, a GNU project

language for statistical computing. First, the Response Time (RT) data are tested

61

www.manaraa.com

for mean validity using a one-sample t-test, and computing the standard deviation,

mean, and 95% confidence interval.

The comparisons between the baseline control (Events Per Second = 0) and a

particular treatment consists of paired t-tests or Welch-based t-tests. If pilot tests

produce significant degrees of freedom above the necessary statistical power, then the

paired t-tests are more appropriate. However, if additional runs are required for some

but not all treatments, then the corresponding analysis uses the Welch t-test, which

is more appropriate when sample sizes are very different.

A “full” general linear model is developed using all factors, and analyzed using

R to identify significant and insignificant factors. This leads to a reduced model,

which can be compared against the full model using Analysis Of Variance (ANOVA)

techniques.

Due to performance metrics that may be related (e.g., CPU utilization increasing

may affect overall network latency), an analysis of covariance general linear model is

carried out against the experiment data.

4.8 Methodology Summary

This chapter describes the experimentation methodology used to measure the

efficiency (CPU utilization) and effectiveness (Response Time and Alerts Generated)

of the AHNSR system. The treatments use varying workload levels to determine the

operational capacity of the system.

Experimental pilot tests reveal an average of 0.63675 seconds from log generation

to flow table update. The test environment follows the configuration described, in-

cluding two hosts, one OSSEC server, one Floodlight SDN controller, and one PICA

P3290 switch.

62

www.manaraa.com

V. Results and Analysis

5.1 Overview

This section describes the results obtained using the AHNSR design during the

experiment structure described in Chapter 4. Section 5.2 describes initial observations

of log collection and gives interpretative insight of the behavior. Analysis of Tests

1–4 are reported in Section 5.3, while the extra load testing (Tests 5–32) is reported

in Section 5.4. Lastly, Section 5.5 describes how R is used to develop performance

models of Response Time (RT) that fit the collected data. Interpretative discussion

includes examples of how these models give insight into any given instance of the

AHNSR framework.

5.2 OSSEC Log Collection Behavior

While conducting initial tests of OSSEC performance and behavior, the resulting

response times were not following expected trends. As OSSEC advertises real-time

monitoring of any host log files, this research expected each log entry to be forwarded

immediately to the OSSEC server and continue down the OSSEC log pipeline de-

scribed in Section 3.4. Therefore, each individual log event would result in very

similar, or near constant response time under normal load.

However, preliminary tests reveal something different. Figure 22 shows the indi-

vidual alert response times of 250 log entries entered into a single host’s syslog file,

following the experimental design setup described in Chapter 3. The scatter-plot

displays non-constant response times, and also presents a significant “jump” around

alert ID 160.

After scaling the tests to multiple hosts, this pattern continues. Figure 23 displays

a similar preliminary test on 10 different hosts simultaneously (Agent IDs Agent 101

63

www.manaraa.com

Figure 22. Individual alert response time from 250 logs collected on one host

to Agent 110). By following the data-points of each agent’s logs, the same pattern

emerges: sequentially decreasing times, followed by an approximate 1 second sudden

response time increase.

Figure 23. Individual alert response time from 250 logs per host, from 10 hosts

64

www.manaraa.com

Upon further investigation, the source code of logcollector.c, a global variable

exposes the truth that its daemon is not actually forwarding the logs real-time, but is

instead executing inside a while loop defined by a loop timeout variable. Furthermore,

an internal OSSEC options configuration file has a logcollector.loop timeout property

set to one, its minimum accepted value (Appendix D). Documentation states the

property units are in seconds – this suggests any new logs are collected after every 1

second timeout, which can help explain the trends in Figure 22.

Figure 24 helps illustrate the entire process in detail. A sample experiment begins

logging entries from a relative time point of zero. The agent’s logcollector daemon has

been running continually, and its current timeout happens to expire at time=0.35s,

at which point it immediately checks the monitored syslog file, sees the 3 new log

entries, and forwards them to the server for processing. In calculating the response

time for these 3 logs, the difference between the singular check time (0.35) and the

naturally increasing insertion times results in decreasing values (.25 → .15 → .05).

After collecting those logs, the daemon re-enters a one second timeout, checking

the log again at time=1.35s. At this point, it collects the new entries 4-13, again

forwarding them for processing. Similarly, the calculated response times result in a

sequentially decreasing trend, and with all the response times plotted against their

Alert ID, the graph in Figure 24 mirrors the actual results seen in Figures 22 and 23.

The slight differences in sequential alerts is the sum of both write and read op-

erations: the actual write time of logs to the syslog file, in addition to the first-in,

first-out (FIFO) processing times during the checks. This gives the most advantageous

response times to those logs inserted most recent to the point of log collection.

Preliminary results in Figure 23 also show how the agents’ logcollector daemons are

not synchronized together, as the offsets of each 1 second timeout result in offsets of

the recorded response times. Their timeout sessions operate independently, yet given

65

www.manaraa.com

Figure 24. Sample log collection behavior with a 1 second timeout loop

66

www.manaraa.com

enough data (discussed in Section 4.7), statistically significant conclusions can still

be made about the system behavior. After understanding the log collection behavior,

it is apparent the recorded response time performance should still converge on a

statistical mean with <1s confidence interval, despite the implicit range of varying

timeout offsets.

5.3 Performance Under Expected Load

This section analyzes AHNSR performance results under the suggested normal

operating load of 500 EPS (discussed in Section 4.6).

Table 5 summarizes the results of Tests 1–4, which individually test the SDN

Response factors at the given operational load level. All responses provide 100%

successful alert generation. Both CPU utilization and Response Time vary among

the tests – the proceeding analysis determines the significance of each.

Table 5. AHNSR performance results under 500 EPS load, 10 active agents

Test # Response AG(%) CPU(%) Mean RT(s) σ σx̄ 95% C.I.(s)

(control) N/A N/A 0.20 N/A N/A N/A N/A

1 Log-Only 100 9.22 0.5210 0.2860 0.0040 +−0.0079

2 Static Flow 100 34.45 0.5639 0.2779 0.0039 +−0.0077

3 ACL 100 28.52 0.5438 0.2825 0.0040 +−0.0078

4 Firewall 100 31.88 0.5711 0.2934 0.0041 +−0.0081

5.3.1 Expected Load: Response Time.

Figure 25 displays the spread of all RT data for Tests 1–4 (individual trials shown

in Appendix K). The ranges correlate with the behavior expected in the log collection

67

www.manaraa.com

workflow; however slight differences are visible, especially with the dispersion of the

upper quartile in the Firewall test.

Figure 25. RT quartile ranges from 15 trials, 500 EPS, 10 active agents

The R script in Appendix I produces Figure 26, which is a plot of resultant

confidence intervals on the means based on the calculations of standard deviation,

standard error of the mean, and a confidence interval (default 95%). The analysis

continues by conducting other statistical methods for further insight.

A one-way repeated measures ANalysis Of VAriance (ANOVA) test provides an

F-statistic of 30.189 and a p-value < 2.2e−16. Therefore, this research clearly rejects

the null hypothesis of equal means for all four response types at the 500 EPS event

density. The ANOVA test only answers the question of whether or not there are

significant differences in the response time means. However, it does not provide us

with any information about how they differ. The analysis must conduct a pairwise

t-test to collect this information.

The pairwise t-tests use the Holm adjustment method to correct the Type I error

rate across the tests. Mathematically, the Holm adjustment sequentially compares

68

www.manaraa.com

Figure 26. C.I. on the RT mean from 15 trials of 500 EPS, 10 active agents

the lowest p-value with a Type I error rate that is reduced for each consecutive test.

The Holm method is generally considered superior to the Bonferroni adjustment, yet

still maintains a mathematically conservative approach [56]. The test outputs the

following:

ACL Firewall Log-Only

Firewall 6.8× 10−6 - -

Log-Only 0.00019 < 2× 10−16 -

Static Flow 0.00084 0.20737 2.6× 10−13

Using an alpha level of .05 threshold, the pairwise t-test results indicate that

there is a statistically significant difference between almost all responses, excluding

that between static flow and firewall (p = .20737 > α). Therefore, the analysis of

Tests 1–4 can develop the following statistical conclusions:

1. At this load level (500 EPS), the Log response is faster than all other tested

responses.

69

www.manaraa.com

2. At this load level (500 EPS), the ACL response is faster than the Firewall and

Static Flow response.

5.3.2 Expected Load: CPU.

CPU data is measured using the Linux mpstat package, and Figure 27 displays

the spread of CPU data for each SDN response at the tested level, 500 EPS. The

data only includes a single measurement captured during the first second after the

experiment begins, because RT measurements show the active response completing

within one second on average. Therefore the tests only capture CPU utilization

directly involved in active response pre-processing. Any measurements below or equal

to the control threshold (≤ 0.20% – from “control” test in Table 5) would represent

behavior equivalent to the system at an idle state (reduction seen in Appendix L).

The repeated measures design provides additional data for the CPU metric by having

multiple trials with every SDN response type, as discussed in Section 4.6.4.

While there are technically two servers with CPU resources (OSSEC and Flood-

light), only the mean CPU utilization of the OSSEC server is reported on Table 5

because it is the primary consumer. Both servers’ data are visible in Figure 27. The

ranges for the CPU metric on the OSSEC server are higher in comparison to the

counterpart Floodlight utilization during and given SDN response type test. It fol-

lows logically that the utilization range on the Floodlight server during the Log-Only

test results in a narrow range near zero. The Log-Only response does not demand any

immediate work from the specialized modules provided by Floodlight, so one would

expect to see a minimal amount of processor cycles used.

Likewise with the RT data, the analysis proceeds to extrapolate the standard

deviation and standard error of the measurements in order to build a 95% confidence

interval on the mean utilization for each server-response pair. Figure 28 displays these

70

www.manaraa.com

results vertically stacked on each SDN response.

Figure 27. OSSEC and Floodlight CPU quartile ranges, 15 trials at 500 EPS

Figure 28. C.I. on the Floodlight and OSSEC CPU mean, 15 trials of 500 EPS

An ANOVA test on each set of the CPU data from OSSEC and Floodlight pro-

duces F statistics of 105.98 and 11.7373 respectively. This guarantees that the means

are not all equal across the SDN type subsets. Furthermore, a Holm-adjusted pairwise

71

www.manaraa.com

t-test for the CPU utilization between the responses on the OSSEC server outputs

the following:

ACL Firewall Log-Only

Firewall 6.1× 10−5 - -

Log-Only 6.6× 10−13 < 2× 10−16 -

Static Flow 0.014 0.049 1.1× 10−15

Similarly, a Holm-adjusted pairwise t-test for the CPU utilization between the

responses on the Floodlight server outputs the following:

ACL Firewall Log-Only

Firewall 1.0 - -

Log-Only 0.00036 0.00012 -

Static Flow 1.0 1.0 5.6× 10−5

Using the same alpha threshold of .05, the analysis can come to the following

statistical conclusions:

1. There are significant differences in the CPU means between all SDN response

methods on the OSSEC server.

2. There is only a significant difference in the CPU mean for the Log-Only response

method on the Floodlight server.

This research considers the net sum of all resources from both servers when de-

termining the most efficient response method. Therefore, the evaluation of Tests 1–4

orders the response methods from best to worst in terms of CPU resource efficiency:

Log-Only, ACL, Static Flow, and Firewall.

72

www.manaraa.com

5.4 Load Testing

In order to gather insight on AHNSR performance under non-standard load levels

(e.g., peak periods), Tests 5–32 measure how it responds under increasing event den-

sity levels. The summary of these results are shown in Tables 6 through 9. General

observations from the summary data can be formulated:

• Every EPS level resulted in 100% successful alert generation.

• There is a trend of increasing CPU as EPS increases.

• There is a trend of increasing RT as EPS increases.

Each EPS level is equivalent to the aggregate log amount generated from all agents.

For example, the 100 EPS level is the result of a 10 logs entered on 10 disparate agents.

With this design, and considering the growing sample size for subsequent tests, the

tests set a sample size baseline equal to the power test calculated in Section 4.6.4

(n ≥ 7065). Therefore, all EPS levels except 7500 and 10000 require repeated trials

in a repeated measures design to meet the minimum sample size for analysis.

73

www.manaraa.com

Table 6. Log-Only response load testing results

Test # EPS AG(%) CPU(%) Mean RT(s) σ σx̄ 95% C.I.(s)

(control) 0 N/A 0.20 N/A N/A N/A N/A

5 10 100 0.31 0.4941 0.2935 0.02075 +−0.0409

6 100 100 2.06 0.4812 0.2867 0.0064 +−0.0274

7 1000 100 13.4 0.5134 0.2640 0.0026 +−0.0176

8 2500 100 27.99 0.5415 0.2883 0.0057 +−0.0113

9 5000 100 60.15 0.7623 0.3259 0.0046 +−0.0090

10 7500 100 60.84 1.0396 0.4334 0.0050 +−0.0098

11 10000 100 61.06 1.1514 0.4892 0.0048 +−0.0095

Table 7. ACL response load testing results

Test # EPS AG(%) CPU(%) Mean RT(s) σ σx̄ 95% C.I.(s)

(control) 0 N/A 0.20 N/A N/A N/A N/A

12 10 100 0.56 0.5174 0.2872 0.0064 +−0.0125

13 100 100 3.83 0.5599 0.2872 0.0064 +−0.0253

14 1000 100 44.34 0.7050 0.3131 0.0031 +−0.0221

15 2500 100 76.49 1.1243 0.4027 0.0080 +−0.0157

16 5000 100 80.06 2.0061 0.7462 0.0105 +−0.0206

17 7500 100 78.63 2.4270 0.9210 0.0106 +−0.0208

18 10000 100 79.62 3.2080 1.1990 0.0119 +−0.0235

74

www.manaraa.com

Table 8. Firewall response load testing results

Test # EPS AG(%) CPU(%) Mean RT(s) σ σx̄ 95% C.I.(s)

(control) 0 N/A 0.20 N/A N/A N/A N/A

19 10 100 0.72 0.5206 0.2800 0.0197 +−0.0390

20 100 100 4.51 0.5209 0.2942 0.0065 +−0.0261

21 1000 100 55.73 0.9120 0.3394 0.0107 +−0.0113

22 2500 100 80.94 1.3112 0.6265 0.0056 +−0.0210

23 5000 100 85.49 2.8844 1.1538 0.0163 +−0.0319

24 7500 100 87.13 5.2275 2.1906 0.0254 +−0.0499

25 10000 100 87.39 5.8603 2.2177 0.0222 +−0.0435

Table 9. Static Flow response load testing results

Test # EPS AG(%) CPU(%) Mean RT(s) σ σx̄ 95% C.I.(s)

(control) 0 N/A 0.20 N/A N/A N/A N/A

26 10 100 0.66 0.5340 0.2912 0.0291 +−0.0577

27 100 100 4.97 0.5204 0.2868 0.0064 +−0.0175

28 1000 100 53.04 0.5752 0.3573 0.0035 +−0.0172

29 2500 100 69.7 1.3531 0.5025 0.0100 +−0.0249

30 5000 100 75.46 2.4499 1.0372 0.0146 +−0.0287

31 7500 100 75.76 2.7983 1.1034 0.0127 +−0.0249

32 10000 100 76.44 3.7025 1.4978 0.0149 +−0.0293

75

www.manaraa.com

5.4.1 AG.

To test these higher-end networking load levels on the servers, modifications to

the Linux kernel networking parameters were necessary. Appendix H details the

tuning changes made on both the OSSEC and Floodlight servers. These modifications

included an internal change to the system file descriptor limit because every open

network socket requires a file descriptor in Linux. Increasing this limit ensures that

lingering TIME WAIT sockets and other consumers of file descriptors do not impact

the ability to handle numerous concurrent requests. Therefore, this limit must be set

above the EPS load level in each test environment because each event subsequently

initiates a TCP connection between OSSEC and Floodlight, creating open network

socket file descriptors.

The results show AHNSR successfully handles every EPS load level with 100%

alert generation. Interestingly, OSSEC’s agent to server communication dependency

on UDP (an implicit potential weakness of OSSEC’s log collection procedure) did

not seem to affect its ability to handle even extreme loads. Granted, the lack of

normal enterprise IP traffic may affect this ability, but it should still maintain at

least a normally observed standard of 98% reliable delivery [57]. Additionally, a single

intrusion would commonly result in several logs (indicative of the threat) forwarded to

the OSSEC server – thus, it could be argued that OSSEC can afford to lose a certain

percentage of those logs if at least one results in the appropriate active response

action.

5.4.2 Load Testing: RT.

Comparing the difference in adjusted start time and response end time for each

alert in the data, this section summarizes and analyze the RT metric from both a

global and per-test perspective. For each EPS level, the mean RT is calculated along

76

www.manaraa.com

with its standard deviation, standard error, and resulting 95% confidence interval (R

code in Appendix J).

Figure 29 displays these means for each SDN response at the tested EPS levels. A

small colored ribbon connects the high and low confidence intervals between points.

Interestingly, the seemingly minor, insignificant differences seen at the 500 EPS level

in Tests 1–4 are definitely magnified at increasing loads. For example, the widest

observed gap is 4.67 seconds, occurring between the upper C.I. on the Log-Only

mean RT and the lower C.I. on the Firewall mean RT at the 10000 EPS level. Given

these results, administrators should consider the significant performance hit when

using the Firewall module as an active response, especially if similar results can be

obtained by utilizing the Static Entry or ACL modules.

Figure 29. Mean RT for EPS levels 10 through 10000, 10 active agents

Furthermore, these results can give insight into an appropriate system architecture

based on network needs and load estimation. If a network with similar resources to

this experiment anticipates peak periods of 5000 SDN Response Demanding EPS, and

certain policies state that any automated immediate reaction to any intrusion must

77

www.manaraa.com

be, on average, under 2 seconds – these results suggest the limitations would eliminate

the Firewall and Static Flow Entry active responses as acceptable candidates.

5.4.3 Load Testing: CPU.

This section reports and analyzes the average utilization of the AHNSR system’s

CPU resources during load testing. The sample size of this data is much smaller than

that of the RT data, due to interval limitations of mpstat output (as noted in Section

1.6). However, the analyis can still come to conclusions about the effect of EPS on

this metric.

Since some RT measurements are greater than one second, a more accurate picture

of resource utilization includes the entirety of the mpstat output, which collects CPU

information for 10 seconds, when AHNSR work may still be occuring. Therefore,

Figure 30 plots the mean of the CPU measurements for each SDN response at every

EPS level. It follows the order of performance that has been observed in previous tests,

with the Log-Only response maintaining the lowest utilization, Firewall maintaining

highest, and ACL/Static Flow in between.

The collected data seems to follow a logarithmic trend (with the exception of

Log-Only response) that tends to level off at an upper limit for each response. One

explanation for this could be the Linux operating system’s CPU scheduler trying to

meet the needs of both bash execution and network I/O. Resource limits and cycling

between process and I/O bursts can extend the CPU utilization required over multiple

seconds versus what is possible in a single second. Also, testing of the log generation

script suggests that the experiments are reaching the upper limit of how many logs

can be written to the syslog file per second. This would correlate to utilization per

second leveling off as the actual EPS generation rate per second is the same. Once

pass the maximum threshold, it would require multiple seconds to actually generate

78

www.manaraa.com

Figure 30. Mean CPU utilization for EPS levels 10 through 10000, 10 active agents

the amount of logs. Further testing confirms this – the log generation script has a

max generation rate near 1000 logs per second. This means testing an aggregate EPS

level above 10000 would require more than ten agents (1000× 10 = 10000).

5.5 RT Performance Models

Using the collected data, R constructs models of AHNSR system performance.

Appendix J details the necessary R code execution in developing a linear model for

each SDN response. Considering the primary response variable, RT, as the output,

Figure 31 plots in blue the mean RT summary data from Tables 6–9. The red line

illustrates the corresponding linear models for each response with a surrounding 95%

confidence interval.

79

www.manaraa.com

(a) Log-Only (b) Static Flow Entry

(c) Firewall (d) ACL

Figure 31. Fitting linear models where y = Response Time and x = EPS

80

www.manaraa.com

These models represent systems that choose to implement that specific SDN re-

sponse style exclusively. When RT (Response Time) is described as a function of eps

(Events Per Second), the models can be derived as

• Log-Only:

RT = 0.42869 + 0.00007eps (3)

RT[95% lower] = 0.33000 + 0.00005eps (4)

RT[95% upper] = 0.52737 + 0.00009eps (5)

• Static Flow Entry:

RT = 0.46778 + 0.00033eps (6)

RT[95% lower] = 0.07721 + 0.00024eps (7)

RT[95% upper] = 0.85834 + 0.00040eps (8)

• Firewall:

RT = 0.23732 + 0.00059eps (9)

RT[95% lower] = −0.50995 + 0.00045eps (10)

RT[95% upper] = 0.98458 + 0.00072eps (11)

• ACL:

RT = 0.49669 + 0.00027eps (12)

RT[95% lower] = 0.31284 + 0.00025eps (13)

RT[95% upper] = 0.68054 + 0.00030eps (14)

5.5.1 Dynamic Model.

If the AHNSR framework were to use a combination of different responses, R

must construct a model to include all parameters. This is a more flexible model

that allows for a dynamic response policy in real enterprise environments. However,

in order to correctly analyze the data in this fashion, this research cannot interpret

the parameters as binary factors. Instead, they can be considered as continuous,

numeric values representing the percentage of alerts that will be attributed to its

response method. Therefore, the current analysis interprets the conducted tests as

81

www.manaraa.com

Table 10 suggests, where each test group is actually the sum of the percentages for

each response method and that specific category maintains 100% alert attribution.

Table 10. Dynamic model interpretation

Test # EPS
Alert Distribution To

Log-Only Firewall ACL Static

5-11
10, 100, 1000,
2500, 5000,
7500, 10000

100% 0% 0% 0%

12-18
10, 100, 1000,
2500, 5000,
7500, 10000

0% 100% 0% 0%

19-25
10, 100, 1000,
2500, 5000,
7500, 10000

0% 0% 100% 0%

26-31
10, 100, 1000,
2500, 5000,
7500, 10000

0% 0% 0% 100%

Because each method is operating with independent active response scripts and

Floodlight modules, this research assumes there will be no dependency issues affecting

the performance metrics when starting to mix the methods in this dynamic model.

This assumption allows the analysis to use the previously collected experimental data

to develop a model and make educated estimates on the mixed scenario described

next.

The derived expression for the average response time (RTavg) in a dynamic model

can be described as

82

www.manaraa.com

RTavg = l(0.42869 + 0.00007e) + s(0.46778 + 0.00033e)+

f(0.23732 + 0.00059e) + a(0.49669 + 0.00027e)

(15)

RTavg[95% lower] = l(0.33000 + 0.00005e) + s(0.07721 + 0.00024e)+

f(−0.50995 + 0.00045e) + a(0.31284 + 0.00025e)

(16)

RTavg[95% upper] = l(0.52737 + 0.00009e) + s(0.85834 + 0.00040e)+

f(0.98458 + 0.00072e) + a(0.68054 + 0.00030e)

(17)

where RTavg is described as a function of e (EPS), a (ACL response ratio), f (Firewall

response ratio), l (Log-only response ratio), and s (Static Flow response ratio). This

function assumes (a+ f + l + s) = 1, meaning the distribution ratios sum to 100%.

This consolidated dynamic model can be used where general network traffic statis-

tics are already known. For example, the distribution ratios are populated by taking

a sample network environment with the following estimates (these values are based

upon the immediate active response required on the aggregate log amount in the

AHNSR workflow – thus a brief rationale is included for the estimation in a general-

ized enterprise environment):

1. 80% Log-Only: A traditional enterprise environment can safely assume that

most logs need no further action other than OSSEC logging.

2. 10% ACL: Some suspicious, threatening, or multi authentication-failed logs

may require IP addresses to be put on the access control list temporarily or

permanently.

3. 5% Firewall: Since the firewall is configured relatively static for system control

over ports/services/etc., only extreme cases should create new rules to imple-

83

www.manaraa.com

ment enterprise-wide.

4. 5% Static Flow: Special circumstances may require specific, custom flow

responses that can be specific to IP, hostname, username, or other match fields.

With these estimates inserted into the dynamic RT function, the average RT

becomes

RTavg = .8(.42869 + .00007e) + .1(.46778 + .00033e)+

.05(.23732 + .00059e) + .05(.49669 + .00027e)

(18)

Figure 32 is a plot of RTavg for the consolidated dynamic model. Using this

information, administrators can make informed decisions about network design and

scalability requirements. For example, if they desire a near-immediate (< 1s) deny-

access response when necessary, then the model suggests an appropriate EPS level.

Given this limit, auditing policies on all workstations can be modified to produce an

average aggregate less than 4000 logs per second (as Figure 32 shows the average RT

near 4000 EPS ≤ 1s). On the other hand, the threshold provides an estimate on the

number of agents that a single AHNSR instance can support.

Lastly, this research seeks to confirm the accuracy of the dynamic model by con-

ducting a single additional experiment with 10 agents each logging 500 EPS, for an

aggregate 5000 EPS. However in this scenario, the active responses are configured to

only respond for specific alert levels.

There are 18 possible alert levels in OSSEC and each log has a single alert level

identifier, discussed in Section 3.4. Therefore, this test’s distribution can mimic the

sample network described above like so:

• Log-Only assigned to alert levels 1 through 14. [14/18 = 77.77% distribution]

• ACL assigned to alert levels 15 and 16. [2/18 = 11.11% distribution]

84

www.manaraa.com

Figure 32. RT estimate in 80% Log, 10% ACL, 5% Firewall, 5% Static Flow model

• Firewall assigned to alert level 17. [1/18 = 5.55% distribution]

• Static Flow assigned to alert level 18. [1/18 = 5.55% distribution]

The test yields a mean RT of 1.049 seconds. Figure 33 shows how this data

(represented by the blue X) falls within the 95% confidence interval for the dynamic

model when the EPS Level = 5000, confirming the accuracy of the model.

5.6 Chapter Summary

This section summarizes the results of all evaluation tests. Preliminary results are

discussed with insight on the log collection timeout behavior. Next, it presents data

results of all tests, indicating when there were statistically significant differences in

the RT and CPU performance metrics. The 100% success rate of the AG metric also

indicates dependable use of the OSSEC log collection workflow. Lastly, it compares

the performance between different active response methods and presents performance

models for the RT factor.

85

www.manaraa.com

Figure 33. Dynamic model test result

86

www.manaraa.com

VI. Conclusion

6.1 Overview

This chapter summarizes the research and statistical conclusions from the exper-

imental evaluation. Section 6.2 reiterates key conclusions drawn from the research.

Section 6.3 discusses experimental significance in the SDN domain. Finally, Section

6.4 suggests potential opportunities for future work with the AHNSR system design.

6.2 Research Conclusions

The research was successful in implementing a viable security solution for SDN

controller action in response to host-based intrusion detection system alerts. As

hypothesized, both the response time for successful completion of an appropriate SDN

response and the processor resource utilization increased as the aggregate number of

logs being generated by hosts (EPS) increased. The alert generation rate remained

above an effectiveness standard of 99% for all tests. Additionally, when comparing the

different response methods, the Access Control List response method did outperform

the Firewall response method in both quantitative and qualitative metrics. These

conclusions support the original hypothesis.

Evaluation tests emulate a traditional enterprise network using OSSEC server/a-

gents deployment, real hardware, and implementation of security options. Security

is not overlooked during AHNSR configuration as it adopts confidentiality, integrity,

and authentication characteristics, building an appropriate defense against attacks

directed towards its internal structure. All OpenFlow and REST API communica-

tion is encrypted via SSL/TLS, and pre-configured certificates allow whitelisting for

higher privilege access of trusted systems.

Tests 1–4 demonstrate a mean active response time near 0.53 seconds, regardless

87

www.manaraa.com

of response method, when the system is handling 500 incoming logs per second. Also,

CPU utilization on all components remained below 35%. These metrics illustrate an

efficient and effective integration of OSSEC and Floodlight in the AHNSR design.

Load testing from Tests 5–32 give insight into RT growth rate for each response

method, allowing performance projection as EPS increases. A consolidated model is

also developed for performance estimates in dynamic environments.

6.3 Research Significance

SDN interest is exploding; its market value is forecast to grow at 86% Compound

Annual Growth Rate (CAGR), from being valued at approximately $2 billion in 2015

to $132 billion+ in 2022 [58]. All this publicity about SDN begs the question - is

it realistic? Google says yes. In fact, they have already implemented SDN into the

backbone Wide Area Network (WAN) that connects their data centers all across the

globe. By doing this, they have proven: 1) conversion from a traditional network is

possible; and 2) the results are substantial. Their bandwidth utilization on their new

SDN has been measured at 95%, a huge increase from traditional rates of 30-40% [59]

[60]. As more technological leaders of the Open Networking Foundation continue to

implement and promote SDN, it will become a standard practice in the industry.

As this trend continues, migration of network services must naturally follow with

security as a top priority. Decisions will be made about maintaining a heterogeneous

intrusion detection system (if any) or transitioning to what this research proposes: a

unified SDN security management solution. There are advantages to the unique infor-

mation both systems collect and can be extremely effective when they work together.

Network protection is possible by authorizing a central controller to manage layer 2

devices via the OpenFlow protocol; however, it is imperative to provide the controller

accurate security data, namely from a well-configured HIDS manager. Ideally, the

88

www.manaraa.com

privileged controller functionality is abstracted to a secure API, permitting the HIDS

manager to initiate requests based off the present or historical data it already has.

This abstracted version is exactly what the research represents through the AHNSR

system.

6.4 Future Work

There are many possibilities of extending the AHNSR system due to additional

research and/or tools developed in other domains. Incorporation of these tools could

increase performance, scalability, usability, and more. The following suggests four

future work options based off what was encountered while conducting this research:

• First, the limitation of actual “real-time” log collection can be solved by internal

development in the OSSEC agent software. It is possible to modify the process

by utilizing the libevent library, and configuring it to trigger upon new entries

in the same log files monitored by OSSEC. Therefore, it could achieve real

time monitoring based off triggers rather than timeout intervals. Since those

modifications can affect overall performance, more evaluation is necessary to

determine the significance.

• Second, there is more potential in utilizing the historical data stored in the OS-

SEC database. For the entirety OSSEC is running in a network, it is collecting

data on each host’s actions. Login times, syslog, and application interaction all

put together effectively captures an individual’s cyber behavior. One could im-

plement machine learning with this data, taking advantage of the unprocessed

training set naturally developed. Alerts could then be generated off a more

intelligent algorithm rather than simple regex parameters. Trends can be de-

veloped on a per-hostname and/or per-username basis, giving more control and

insight into possible insider threats as well.

89

www.manaraa.com

• Third, there is always room for improvement in program execution, manage-

ment, and abstraction. Regarding Floodlight, features are continually being

developed that give users greater flexibility and control over their SDN. The

OpenFlow protocol continues to be updated frequently but adopted in practice

slowly, thereby making it difficult to utilize newer features, even if some of these

may be more efficient/effective in handling appropriate active responses. Cre-

ativity and innovation are supreme though - there are endless possibilities for

finite control over network and transport layer headers at each packet forward-

ing device in networks around the globe.

• Lastly, a different CPU utilization collection technique can be implemented.

This research could not bypass the frequency limitation of per-second reports

using the mpstat command. Another method with sub-second insight may be

more effective in providing a higher sample size of CPU data, consequentially

yielding more accurate results.

6.5 Chapter Summary

This chapter concludes the background, design, methodology, and results of this

research. It summarizes the overall research conclusions, discusses the significance

of the work, and suggests opportunities for future work in improving the AHNSR

framework.

90

www.manaraa.com

Appendix A. Log Generation Script

1 #include <windows.h>
2 #include <iostream >
3 #include <string >
4 #include <fstream >
5 #include <sstream >
6 using namespace std;
7
8 /// Create a Timer , which will immediately begin counting
9 /// up from 0.0 seconds.

10 /// You can call reset() to make it start over.
11 class Timer {
12 public:
13 Timer() {
14 ///GetSystemTimeAsFileTime (& timestart);
15 GetSystemTime (& timestart);
16 reset();
17 }
18 /// reset() makes the timer start over counting from 0.0 seconds.
19 void reset() {
20 unsigned __int64 pf;
21 QueryPerformanceFrequency ((LARGE_INTEGER *)&pf);
22 freq_ = 1.0 / (double)pf;
23 QueryPerformanceCounter ((LARGE_INTEGER *)&baseTime_);
24 }
25 /// seconds () returns the number of seconds (to very high resolution)
26 /// elapsed since the timer was last created or reset().
27 double seconds () {
28 unsigned __int64 val;
29 QueryPerformanceCounter ((LARGE_INTEGER *)&val);
30 return (val - baseTime_) * freq_;
31 }
32 /// seconds () returns the number of milliseconds (to very high resolution)
33 /// elapsed since the timer was last created or reset().
34 double milliseconds () {
35 return seconds () * 1000.0;
36 }
37
38 string getStartTime () {
39 ///ULONGLONG t = ((ULONGLONG)timestart.dwHighDateTime << 32) | (ULONGLONG)

timestart.dwLowDateTime;
40 ///return (double)t / 10000000.0;
41 string toReturn = to_string(timestart.wHour) + ":" + to_string(timestart.wMinute)

+ ":" + to_string(timestart.wSecond) + "." + to_string(timestart.
wMilliseconds);

42 return toReturn;
43 }
44 private:
45 double freq_;
46 unsigned __int64 baseTime_;
47 ///FILETIME timestart;
48 SYSTEMTIME timestart;
49 };
50
51 int main(int argc , char* argv []) {
52
53 //Start Timer to syncronize with server (trigger)
54 Timer myTimer;
55
56 // Validate input
57 if (argc != 3) {
58 // Tell the user how to run the program
59 cerr << "Usage: " << argv [0] << " <EVENTS -PER -SECOND > <SECONDS -TO -RUN >";
60 return 1;
61 }
62 istringstream ss1(argv [1]);
63 int EVENTS_PER_SECOND;
64 if (!(ss1 >> EVENTS_PER_SECOND)) {
65 cerr << "Invalid number: " << argv [1];
66 return 1;
67 }

91

www.manaraa.com

68 istringstream ss2(argv [2]);
69 int SECONDS_TO_RUN;
70 if (!(ss2 >> SECONDS_TO_RUN)) {
71 cerr << "Invalid number: " << argv [2];
72 return 1;
73 }
74
75 // Create File handle
76 ofstream outfile;
77
78 //Clear the current log
79 // outfile.open(" experimentlog.txt", ios_base :: trunc);
80 // outfile.close();
81
82 // Generate X logs per second for Y seconds , based off input args
83 // closing file after each write so it doesn’t lock control
84 for (int currentSecond = 0; currentSecond < SECONDS_TO_RUN; currentSecond ++) {
85 //If it isn’t the next second yet , then sleep for 10 ms
86 while (myTimer.seconds () < currentSecond) {
87 Sleep (10);
88 }
89 for (int i = 1; i <= EVENTS_PER_SECOND; i++) {
90 outfile.open("experimentlog.txt", ios_base ::app);
91 outfile << "EXPERIMENT1: an event occurred. ";
92 outfile << "LEVEL=1 ";
93 outfile << "ID=";
94 outfile << (currentSecond * EVENTS_PER_SECOND + i); // accumulate event ID over

the entire period
95 outfile << " TIME=" << myTimer.seconds ();
96 outfile << "\n";
97 outfile.close ();
98 // cout << myTimer.seconds ();
99 /// STRINGSTREAM METHOD ??

100 // stringstream tempString;
101 // tempString << "echo EXPERIMENT1: event level 1 generated. IP :192.168.0.102

ID:";
102 // string tempCmd ("echo EXPERIMENT1: event level 1 generated. IP :192.168.0.102

ID:" + i + " >> experimentlog.txt");
103 // system(tempCmd.c_str());
104 }
105 }
106
107 // outfile << "Total Seconds passed: " << myTimer.seconds ();
108 // outfile << "\n";
109 // outfile.close();
110
111 return 0;
112 }

92

www.manaraa.com

Appendix B. Experiment Management Script

1 #!/bin/bash
2 #Author Jon Goodgion
3
4 #Check for command line args
5 if [$# -eq 0]
6 then
7 echo "NO ARGUMENTS SUPPLIED. RUN WITH <EXP NAME > <WAIT -TIME > <optional:TRIAL -

NUMBER >"
8 echo "EXP NAME formatted as HOST#-EPS#-customstring (e.g. 10-1- acltest)"
9 exit 1

10 elif [-z "$1"]
11 then
12 echo "Need EXP NAME"
13 exit 1
14 elif [-z "$2"]
15 then
16 echo "Need Wait time argument"
17 exit 1
18 fi
19
20 if [-z "$3"]
21 then
22 trialnumber =1
23 else
24 trialnumber="$3"
25 echo "Executing with $trialnumber trials"
26 fi
27 expname="$1"
28
29 #Setup Java classpath
30 export CLASSPATH =/home/ubuntu/Downloads/mysql -connector -java -5.1.40/ mysql -connector -

java -5.1.40 - bin.jar:$CLASSPATH
31
32 echo " --- Creating client execution script ... ---"
33
34 IFS=’-’ read -r -a array <<< "$expname"
35 EPS="${array [1]}"
36 echo "./ startLogger3.sh $EPS" >> ~/ clientCommand.txt
37
38 sleeptime="$2"
39 echo "SLEEPTIME=$sleeptime seconds"
40 echo "EPS=$EPS"
41
42 #If a firewall experiment , start firewall module and default allow through the pica

switch
43 if [[$expname == *"firewall"*]]
44 then
45 echo "Enabling Firewall module and allowing flows through switch 5e:3e:c4

:54:44:4f:2b:ba"
46 curl http :// localhost :8080/ wm/firewall/module/enable/json -X PUT -d ’’
47 curl -X POST -d ’{"switchid": "5e:3e:c4 :54:44:4f:2b:ba"}’ http :// localhost

:8080/ wm/firewall/rules/json
48 else
49 echo "Firewall module is DISABLED"
50 fi
51
52 # BEGIN FOR LOOP (TRIALS)
53 for i in ‘seq 1 $trialnumber ‘;
54 do
55
56 echo "--- Resetting OSSEC server logs ... ---"
57 ncat 10.131.0.11 12344 --idle -timeout 1
58 > /home/ubuntu/cpuUsage.log
59 echo "--- Send experiment execution to clients ---"
60 ncat 192.168.0.101 12346 --idle -timeout 1 < ~/ clientCommand.txt &
61 ncat 192.168.0.102 12346 --idle -timeout 1 < ~/ clientCommand.txt &
62 ncat 192.168.0.103 12346 --idle -timeout 1 < ~/ clientCommand.txt &
63 ncat 192.168.0.104 12346 --idle -timeout 1 < ~/ clientCommand.txt &
64 ncat 192.168.0.105 12346 --idle -timeout 1 < ~/ clientCommand.txt &
65 ncat 192.168.0.106 12346 --idle -timeout 1 < ~/ clientCommand.txt &

93

www.manaraa.com

66 ncat 192.168.0.107 12346 --idle -timeout 1 < ~/ clientCommand.txt &
67 ncat 192.168.0.108 12346 --idle -timeout 1 < ~/ clientCommand.txt &
68 ncat 192.168.0.109 12346 --idle -timeout 1 < ~/ clientCommand.txt &
69 ncat 192.168.0.110 12346 --idle -timeout 1 < ~/ clientCommand.txt &
70 wait
71
72 echo "--- Ping priming the hosts ---"
73 #ping all clients to force switch to create necessary temporary forwarding flows (

reducing delay)
74 ping -c 2 192.168.0.3 2>&1 >/dev/null &
75 ping -c 2 192.168.0.101 2>&1 >/dev/null &
76 ping -c 2 192.168.0.102 2>&1 >/dev/null &
77 ping -c 2 192.168.0.103 2>&1 >/dev/null &
78 ping -c 2 192.168.0.104 2>&1 >/dev/null &
79 ping -c 2 192.168.0.105 2>&1 >/dev/null &
80 ping -c 2 192.168.0.106 2>&1 >/dev/null &
81 ping -c 2 192.168.0.107 2>&1 >/dev/null &
82 ping -c 2 192.168.0.108 2>&1 >/dev/null &
83 ping -c 2 192.168.0.109 2>&1 >/dev/null &
84 ping -c 2 192.168.0.110 2>&1 >/dev/null &
85 wait
86
87 #then trigger timestamps/actions to occur simultaneously
88 echo "--- Trigger Experiment Start ---"
89 ncat 192.168.0.101 12345 --idle -timeout 1 &
90 ncat 192.168.0.102 12345 --idle -timeout 1 &
91 ncat 192.168.0.103 12345 --idle -timeout 1 &
92 ncat 192.168.0.104 12345 --idle -timeout 1 &
93 ncat 192.168.0.105 12345 --idle -timeout 1 &
94 ncat 192.168.0.106 12345 --idle -timeout 1 &
95 ncat 192.168.0.107 12345 --idle -timeout 1 &
96 ncat 192.168.0.108 12345 --idle -timeout 1 &
97 ncat 192.168.0.109 12345 --idle -timeout 1 &
98 ncat 192.168.0.110 12345 --idle -timeout 1 &
99 ncat 192.168.0.3 12345 --idle -timeout 1 &

100
101 #New version CPU logging
102 mpstat 1 10 | grep -A 10 "%idle" | tail -n 10 | awk -F " " ’{print $1 " " (100-$13)

}’ > /home/ubuntu/cpuUsage.log
103 wait
104 echo "--- Start Triggers complete ---"
105 echo "--- Waiting for $sleeptime seconds ... ---"
106 sleep "$sleeptime"
107
108 echo "--- Gathering Data ... ---"
109 filename="$expname$i"
110 scp root@10 .131.0.11:/ start -times.txt ~/ RESULTS/"$filename"-startTime.txt
111 scp root@10 .131.0.11:/ cpuUsage.log ~/ RESULTS/"$filename"-cpuUsage.txt
112 scp root@10 .131.0.11:/ var/ossec/logs/active -responses.log ~/ RESULTS/"$filename"-

activeResponse.txt
113 scp root@10 .131.0.11:/ var/ossec/logs/archives/archives.log ~/ RESULTS/"$filename"-

rawLogs.txt
114
115 echo "--- Parsing Data ... ---"
116
117 cd ~/ RESULTS
118 if [[$expname == *"echo"*]]
119 then
120 echo using ECHO dataParser
121 java dataParser "$expname"
122 else
123 echo using logger dataParser3
124 java dataParser4 "$expname" "$i"
125 fi
126
127 #echo " --- Clearing all flows and ACL entries ... ---"
128 #curl http :// localhost :8080/ wm/acl/clear/json
129 wait
130 curl http :// localhost :8080/ wm/staticentrypusher/clear/all/json
131 echo " "
132
133 done
134 #END FOR LOOP

94

www.manaraa.com

135
136 #disable firewall module
137 if [[$expname == *"firewall"*]]
138 then
139 echo "Disabling Firewall module ..."
140 curl http :// localhost :8080/ wm/firewall/module/disable/json -X PUT -d ’’
141 fi
142
143
144 echo " --- Pushing to Drive ... ---"
145 cp ~/ RESULTS/"$expname"-cpu -data.csv ~/ gdrive/
146 cp ~/ RESULTS/"$expname"-data.csv ~/ gdrive/
147 cd ~/ gdrive
148 drive -google push --quiet --destination AFIT/Research/Results/ "$expname"-data.csv
149 drive -google push --quiet --destination AFIT/Research/Results/ "$expname"-cpu -data.

csv
150 echo "$expname DONE"

95

www.manaraa.com

Appendix C. OSSEC Configuration

1 <ossec_config >
2 <global >
3 <email_notification >no</email_notification >
4 <logall >yes</logall >
5 </global >
6 <command >
7 <name>static -entry</name>
8 <executable >testcommand.sh</executable >
9 <expect ></expect >

10 </command >
11 <command >
12 <name>logonly </name>
13 <executable >logOnly.sh</executable >
14 <expect ></expect >
15 </command >
16 <command >
17 <name>ACL -deny</name>
18 <executable >ACL -deny.sh</executable >
19 <expect ></expect >
20 </command >
21 <command >
22 <name>floodlight -firewall -deny</name>
23 <executable >floodlight -firewall -deny.sh</executable >
24 <expect ></expect >
25 </command >
26
27 <active -response >
28 <disabled >no</disabled >
29 <command >ACL -deny</command >
30 <location >server </location >
31 <rules_group >experiment1 </rules_group >
32 </active -response >
33 <active -response >
34 <disabled >no</disabled >
35 <command >logonly </command >
36 <location >server </location >
37 <rules_group >experiment1 </rules_group >
38 </active -response >
39 <active -response >
40 <disabled >no</disabled >
41 <command >static -entry </command >
42 <location >server </location >
43 <rules_group >experiment1 </rules_group >
44 </active -response >
45 <active -response >
46 <disabled >no</disabled >
47 <command >floodlight -firewall -deny</command >
48 <location >server </location >
49 <rules_group >experiment1 </rules_group >
50 </active -response >
51
52 <rules>
53 <include >rules_config.xml</include >
54 <include >pam_rules.xml</include >
55 <include >sshd_rules.xml</include >
56 <include >telnetd_rules.xml</include >
57 <include >syslog_rules.xml</include >
58 <include >arpwatch_rules.xml</include >
59 <include >symantec -av_rules.xml</include >
60 <include >symantec -ws_rules.xml</include >
61 <include >pix_rules.xml</include >
62 <include >named_rules.xml</include >
63 <include >smbd_rules.xml</include >
64 <include >vsftpd_rules.xml</include >
65 <include >pure -ftpd_rules.xml</include >
66 <include >proftpd_rules.xml</include >
67 <include >ms_ftpd_rules.xml</include >
68 <include >ftpd_rules.xml</include >
69 <include >hordeimp_rules.xml</include >
70 <include >roundcube_rules.xml</include >

96

www.manaraa.com

71 <include >wordpress_rules.xml</include >
72 <include >cimserver_rules.xml</include >
73 <include >vpopmail_rules.xml</include >
74 <include >vmpop3d_rules.xml</include >
75 <include >courier_rules.xml</include >
76 <include >web_rules.xml</include >
77 <include >web_appsec_rules.xml</include >
78 <include >apache_rules.xml</include >
79 <include >nginx_rules.xml</include >
80 <include >php_rules.xml</include >
81 <include >mysql_rules.xml</include >
82 <include >postgresql_rules.xml</include >
83 <include >ids_rules.xml</include >
84 <include >squid_rules.xml</include >
85 <include >firewall_rules.xml</include >
86 <include >apparmor_rules.xml</include >
87 <include >cisco -ios_rules.xml</include >
88 <include >netscreenfw_rules.xml</include >
89 <include >sonicwall_rules.xml</include >
90 <include >postfix_rules.xml</include >
91 <include >sendmail_rules.xml</include >
92 <include >imapd_rules.xml</include >
93 <include >mailscanner_rules.xml</include >
94 <include >dovecot_rules.xml</include >
95 <include >ms -exchange_rules.xml</include >
96 <include >racoon_rules.xml</include >
97 <include >vpn_concentrator_rules.xml</include >
98 <include >spamd_rules.xml</include >
99 <include >msauth_rules.xml</include >

100 <include >mcafee_av_rules.xml</include >
101 <include >trend -osce_rules.xml</include >
102 <include >ms -se_rules.xml</include >
103 <include >zeus_rules.xml</include >
104 <include >solaris_bsm_rules.xml</include >
105 <include >vmware_rules.xml</include >
106 <include >ms_dhcp_rules.xml</include >
107 <include >asterisk_rules.xml</include >
108 <include >ossec_rules.xml</include >
109 <include >attack_rules.xml</include >
110 <include >openbsd_rules.xml</include >
111 <include >clam_av_rules.xml</include >
112 <include >dropbear_rules.xml</include >
113 <include >sysmon_rules.xml</include >
114 <include >opensmtpd_rules.xml</include >
115 <include >local_rules.xml</include >
116 </rules>
117
118 <rootcheck >
119 <disabled >yes</disabled >
120 </rootcheck >
121
122 <global >
123 <white_list >127.0.0.1 </white_list >
124 <white_list >::1</white_list >
125 <white_list >^localhost.localdomain$ </white_list >
126 <white_list >10.1.2.2 </white_list >
127 <white_list >10.1.2.48 </white_list >
128 </global >
129
130 <remote >
131 <connection >secure </connection >
132 </remote >
133
134 <alerts >
135 <log_alert_level >1</log_alert_level >
136 </alerts >
137
138 <command >
139 <name>host -deny</name>
140 <executable >host -deny.sh</executable >
141 <expect >srcip </expect >
142 <timeout_allowed >yes</timeout_allowed >
143 </command >

97

www.manaraa.com

144
145 <command >
146 <name>firewall -drop</name>
147 <executable >firewall -drop.sh</executable >
148 <expect >srcip </expect >
149 <timeout_allowed >yes</timeout_allowed >
150 </command >
151
152 <command >
153 <name>disable -account </name>
154 <executable >disable -account.sh</executable >
155 <expect >user</expect >
156 <timeout_allowed >yes</timeout_allowed >
157 </command >
158
159 <command >
160 <name>restart -ossec</name>
161 <executable >restart -ossec.sh</executable >
162 <expect ></expect >
163 </command >
164
165 <command >
166 <name>route -null</name>
167 <executable >route -null.sh</executable >
168 <expect >srcip </expect >
169 <timeout_allowed >yes</timeout_allowed >
170 </command >
171
172 <!-- Files to monitor (localfiles) -->
173
174 <localfile >
175 <log_format >syslog </log_format >
176 <location >/var/log/auth.log</location >
177 </localfile >
178
179 <localfile >
180 <log_format >syslog </log_format >
181 <location >/var/log/syslog </location >
182 </localfile >
183
184 <localfile >
185 <log_format >syslog </log_format >
186 <location >/var/log/dpkg.log</location >
187 </localfile >
188
189 <localfile >
190 <log_format >command </log_format >
191 <command >df -P</command >
192 </localfile >
193
194 <localfile >
195 <log_format >full_command </log_format >
196 <command >netstat -tan |grep LISTEN |egrep -v ’(127.0.0.1| ::1)’ | sort</

command >
197 </localfile >
198
199 <localfile >
200 <log_format >full_command </log_format >
201 <command >last -n 5</command >
202 </localfile >
203
204 <database_output >
205 <hostname >localhost </hostname >
206 <username >ossecuser </username >
207 <password >ossec</password >
208 <database >ossec</database >
209 <type>mysql</type>
210 </database_output >
211
212 </ossec_config >

98

www.manaraa.com

Appendix D. Internal Options Configuration

1 # Analysisd default rule timeframe. Default 360
2 analysisd.default_timeframe =360
3 # Analysisd stats maximum diff.
4 analysisd.stats_maxdiff =999000
5 # Analysisd stats minimum diff. Default 150
6 analysisd.stats_mindiff =150
7 # Analysisd stats percentage (how much to differ from average) Default 150
8 analysisd.stats_percent_diff =150
9 # Analysisd FTS list size. Default 32

10 analysisd.fts_list_size =32
11 # Analysisd FTS minimum string size.
12 analysisd.fts_min_size_for_str =14
13 # Analysisd Enable the firewall log (at logs/firewall/firewall.log)
14 # 1 to enable , 0 to disable.
15 analysisd.log_fw =1
16
17 # Logcollector file loop timeout (check every 2 seconds for file changes)
18 logcollector.loop_timeout =2
19
20 # Logcollector number of attempts to open a log file.
21 logcollector.open_attempts =8
22
23 # Logcollector - If it should accept remote commands from the manager
24 logcollector.remote_commands =0
25
26 # Remoted counter io flush. Default 128
27 remoted.recv_counter_flush =128
28
29 # Remoted compression averages printout.
30 remoted.comp_average_printout =19999
31
32 # Verify msg id (set to 0 to disable it)
33 remoted.verify_msg_id =0
34
35 # Maild strict checking (0= disabled , 1= enabled)
36 maild.strict_checking =1
37
38 # Maild grouping (0= disabled , 1= enabled)
39 # Groups alerts within the same e-mail.
40 maild.groupping =1
41
42 # Maild full subject (0= disabled , 1= enabled)
43 maild.full_subject =0
44
45 # Maild display GeoIP data (0= disabled , 1= enabled)
46 maild.geoip =1
47
48 # Monitord day_wait. Ammount of seconds to wait before compressing/signing
49 # the files.
50 monitord.day_wait =10
51
52 # Monitord compress. (0=do not compress , 1= compress)
53 monitord.compress =1
54
55 # Monitord sign. (0=do not sign , 1=sign)
56 monitord.sign=1
57
58 # Monitord monitor_agents. (0=do not monitor , 1= monitor)
59 monitord.monitor_agents =1
60
61
62 # Syscheck checking/usage speed. To avoid large cpu/memory
63 # usage , you can specify how much to sleep after generating
64 # the checksum of X files. The default is to sleep 2 seconds
65 # after reading 15 files.
66 syscheck.sleep=2
67 syscheck.sleep_after =15
68
69
70 # Database - maximum number of reconnect attempts

99

www.manaraa.com

71 dbd.reconnect_attempts =20
72
73 # Debug options.
74 # Debug 0 -> no debug
75 # Debug 1 -> first level of debug
76 # Debug 2 -> full debugging
77
78 # Windows debug (used by the windows agent)
79 windows.debug =0
80
81 # Syscheck (local , server and unix agent)
82 syscheck.debug=0
83
84 # Remoted (server debug)
85 remoted.debug =0
86
87 # Analysisd (server or local)
88 analysisd.debug=0
89
90 # Log collector (server , local or unix agent)
91 logcollector.debug =0
92
93 # Unix agentd
94 agent.debug =0
95
96 # EOF

100

www.manaraa.com

Appendix E. Floodlight Properties

1 floodlight.modules =\
2 net.floodlightcontroller.jython.JythonDebugInterface ,\
3 net.floodlightcontroller.storage.memory.MemoryStorageSource ,\
4 net.floodlightcontroller.core.internal.FloodlightProvider ,\
5 net.floodlightcontroller.threadpool.ThreadPool ,\
6 net.floodlightcontroller.debugcounter.DebugCounterServiceImpl ,\
7 net.floodlightcontroller.perfmon.PktInProcessingTime ,\
8 net.floodlightcontroller.staticentry.StaticEntryPusher ,\
9 net.floodlightcontroller.restserver.RestApiServer ,\

10 net.floodlightcontroller.topology.TopologyManager ,\
11 net.floodlightcontroller.routing.RoutingManager ,\
12 net.floodlightcontroller.forwarding.Forwarding ,\
13 net.floodlightcontroller.linkdiscovery.internal.LinkDiscoveryManager ,\
14 net.floodlightcontroller.ui.web.StaticWebRoutable ,\
15 net.floodlightcontroller.loadbalancer.LoadBalancer ,\
16 net.floodlightcontroller.firewall.Firewall ,\
17 net.floodlightcontroller.simpleft.FT ,\
18 net.floodlightcontroller.devicemanager.internal.DeviceManagerImpl ,\
19 net.floodlightcontroller.accesscontrollist.ACL ,\
20 net.floodlightcontroller.statistics.StatisticsCollector
21 org.sdnplatform.sync.internal.SyncManager.authScheme=CHALLENGE_RESPONSE
22 org.sdnplatform.sync.internal.SyncManager.keyStorePath =/etc/floodlight/key2.jceks
23 org.sdnplatform.sync.internal.SyncManager.dbPath =/var/lib/floodlight/
24 org.sdnplatform.sync.internal.SyncManager.keyStorePassword=PassWord
25 org.sdnplatform.sync.internal.SyncManager.port =6009
26 org.sdnplatform.sync.internal.SyncManager.thisNodeId =1
27 org.sdnplatform.sync.internal.SyncManager.persistenceEnabled=FALSE
28 org.sdnplatform.sync.internal.SyncManager.nodes =[\
29 {"nodeId": 1, "domainId": 1, "hostname": "192.168.1.100", "port": 6642} ,\
30 {"nodeId": 2, "domainId": 1, "hostname": "192.168.1.100", "port": 6643}\
31]
32 net.floodlightcontroller.forwarding.Forwarding.match=in-port , vlan , mac , ip,

transport
33 net.floodlightcontroller.forwarding.Forwarding.detailed -match=src -mac , dst -mac , src -

ip, dst -ip, src -transport , dst -transport
34 net.floodlightcontroller.forwarding.Forwarding.flood -arp=NO
35 net.floodlightcontroller.forwarding.Forwarding.idle -timeout =5
36 net.floodlightcontroller.forwarding.Forwarding.set -send -flow -rem -flag=FALSE
37 net.floodlightcontroller.forwarding.Forwarding.remove -flows -on -link -or-port -down=TRUE
38 net.floodlightcontroller.core.internal.FloodlightProvider.role=ACTIVE
39 net.floodlightcontroller.core.internal.FloodlightProvider.controllerId =1
40 net.floodlightcontroller.linkdiscovery.internal.LinkDiscoveryManager.latency -history -

size =10
41 net.floodlightcontroller.linkdiscovery.internal.LinkDiscoveryManager.latency -update -

threshold =0.5
42 net.floodlightcontroller.core.internal.FloodlightProvider.

shutdownOnTransitionToStandby=true
43 net.floodlightcontroller.core.internal.OFSwitchManager.openFlowPort =6653
44 net.floodlightcontroller.core.internal.OFSwitchManager.openFlowAddresses =0.0.0.0
45 net.floodlightcontroller.core.internal.OFSwitchManager.workerThreads =16
46 net.floodlightcontroller.core.internal.OFSwitchManager.bossThreads =1
47 net.floodlightcontroller.core.internal.OFSwitchManager.connectionBacklog =1000
48 net.floodlightcontroller.core.internal.OFSwitchManager.connectionTimeoutMs =60000
49 net.floodlightcontroller.core.internal.OFSwitchManager.

defaultMaxTablesToReceiveTableMissFlow =1
50 net.floodlightcontroller.core.internal.OFSwitchManager.

maxTablesToReceiveTableMissFlowPerDpid ={"00 :00:00:00:00:00:00:01":"1","2":"1"}
51 net.floodlightcontroller.core.internal.OFSwitchManager.

clearTablesOnInitialHandshakeAsMaster=YES
52 net.floodlightcontroller.core.internal.OFSwitchManager.

clearTablesOnEachTransitionToMaster=YES
53 net.floodlightcontroller.core.internal.OFSwitchManager.keyStorePath =/home/ubuntu/

floodlight -master/floodlight/switch -keystore.jks
54 net.floodlightcontroller.core.internal.OFSwitchManager.keyStorePassword=PassFL
55 net.floodlightcontroller.core.internal.OFSwitchManager.useSsl=YES
56 net.floodlightcontroller.core.internal.OFSwitchManager.supportedOpenFlowVersions =1.0,

1.1, 1.2, 1.3, 1.4, 1.5
57 net.floodlightcontroller.core.internal.OFSwitchManager.switchesInitialState ={"00

:00:00:00:00:00:00:01":"ROLE_MASTER","00 :00:00:00:00:00:00:02":"ROLE_MASTER", "00
:00:00:00:00:00:00:03":"ROLE_MASTER", "00 :00:00:00:00:00:00:04":"ROLE_MASTER","00
:00:00:00:00:00:00:05":"ROLE_MASTER"}

101

www.manaraa.com

58 net.floodlightcontroller.restserver.RestApiServer.keyStorePath =/home/ubuntu/
floodlight -master/floodlight/rest -keystore.jks

59 net.floodlightcontroller.restserver.RestApiServer.keyStorePassword=changeit
60 net.floodlightcontroller.restserver.RestApiServer.httpsNeedClientAuthentication=YES
61 net.floodlightcontroller.restserver.RestApiServer.useHttps=YES
62 net.floodlightcontroller.restserver.RestApiServer.useHttp=NO
63 net.floodlightcontroller.restserver.RestApiServer.httpsPort =8081
64 net.floodlightcontroller.restserver.RestApiServer.httpPort =8080
65 net.floodlightcontroller.restserver.RestApiServer.accessControlAllowAllOrigins=FALSE
66 net.floodlightcontroller.statistics.StatisticsCollector.enable=FALSE
67 net.floodlightcontroller.statistics.StatisticsCollector.

collectionIntervalPortStatsSeconds =10
68 net.floodlightcontroller.topology.TopologyManager.pathMetric=latency
69 net.floodlightcontroller.topology.TopologyManager.maxPathsToCompute =3

102

www.manaraa.com

Appendix F. Active Response Script

1 #!/bin/sh
2 # Generates SDN Active Response
3 # Author: Jon Goodgion
4
5 # Save the bash call start time
6 BASHSTARTTIME=‘date +%H:%M:%S.%N‘
7
8 #Store local directory structure
9 LOCAL=‘dirname $0 ‘;

10 cd $LOCAL
11 cd ../
12 PWD=‘pwd ‘
13
14 #Store command line args
15 ACTION=$1
16 USER=$2
17 ALERTID=$4
18 RULEID=$5
19
20 #Src -ip pulled from ossec location info
21 SRCIP=‘echo "$7" | cut --delimiter=’-’ --fields=1‘
22
23 #Global values and dummy destination IP
24 DSTIP="1.2.3.4"
25 ADDACTION="add"
26 DELACTION="delete"
27
28 # ACL ACTION
29 if ["$ACTION" = "$ADDACTION"]; then
30 #Query Secure REST API
31 ACLRESPONSE=‘curl --cacert /rest -cacert.pem --cert /ossec -selfsigned.crt --key /

ossec -selfsigned.key -X POST -d "{\"src -ip\":\"$SRCIP /32\",\"dst -ip\":\"$DSTIP
/32\",\"action\":\"deny\"}" https ://10.131.0.10:8081/ wm/acl/rules/json ‘

32 if ["$ACLRESPONSE" = ’{"status" : "Success! New rule added."}’]; then
33 echo "BASH -START:$BASHSTARTTIME ACL -ADD:‘date +%H:%M:%S.%N‘ SRCIP:$SRCIP

ALERTID:$4 RULEID:$5 AGENTNAME:$6" >> /var/ossec/logs/active -responses.
log

34 elif ["$ACLRESPONSE" = ’{"status" : "Failed! The new ACL rule matches an existing
rule."}’]; then

35 echo "BASH -START:$BASHSTARTTIME ACL -MATCH:‘date +%H:%M:%S.%N‘ SRCIP:$SRCIP
ALERTID:$4 RULEID:$5 AGENTNAME:$6" >> /var/ossec/logs/active -responses.log

36 else
37 echo "ERROR: Couldn ’t add or test ACL entry" >> /var/ossec/logs/active -responses.

log
38 fi
39 elif ["$ACTION" = "$DELACTION"]; then
40 ACLRULEID=‘curl --cacert /rest -cacert.pem --cert /ossec -selfsigned.crt --key /ossec

-selfsigned.key https ://10.131.0.10:8081/ wm/acl/rules/json | jq ".[] | select (.
nw_src == \"$SRCIP /32\" and .nw_dst == \"$DSTIP /32\") | .id"‘

41 ACLRESPONSE=‘curl --cacert /rest -cacert.pem --cert /ossec -selfsigned.crt --key /
ossec -selfsigned.key -X DELETE -d "{\"ruleid\":\"$ACLRULEID\" }" https
://10.131.0.10:8081/ wm/acl/rules/json ‘

42 if ["$ACLRESPONSE" = ’{"status" : "Success! Rule deleted"}’]; then
43 echo "ACL rule $ACLRULEID Deleted. SRCIP=$SRCIP DSTIP=$DSTIP ALERTID=

$4 RULEID=$5 $6" >> /var/ossec/logs/active -responses.log
44 else
45 echo "ERROR: Couldn ’t delete ACL entry" >> /var/ossec/logs/active -responses.log
46 fi
47 else
48 echo "Comparisons failed" >> /var/ossec/logs/active -responses.log
49 fi
50
51 #FIREWALL ACTION
52 if ["$ACTION" = "$ADDACTION"]; then
53 RESPONSE=‘curl --cacert /rest -cacert.pem --cert /ossec -selfsigned.crt --key /ossec -

selfsigned.key -X POST -d ’{"src -ip": "192.168.0.109/32", "dst -ip": "
192.168.0.103/32", "action":"deny"}’ https ://10.131.0.10:8081/ wm/firewall/rules
/json ‘

54 if [[$RESPONSE == *"added"*]]; then

103

www.manaraa.com

55 echo "BASH -START:$BASHSTARTTIME FIREWALL -ADD:‘date +%H:%M:%S.%N‘ SRCIP:
$SRCIP ALERTID:$4 RULEID:$5 AGENTNAME:$6" >> /var/ossec/logs/active -
responses.log

56 elif ["$RESPONSE" = ’{"status" : "Error! A similar firewall rule already exists."
}’]; then

57 echo "BASH -START:$BASHSTARTTIME FIREWALL -MATCH:‘date +%H:%M:%S.%N‘ SRCIP:$SRCIP
ALERTID:$4 RULEID:$5 AGENTNAME:$6" >> /var/ossec/logs/active -responses.log

58 else
59 echo "ERROR: Couldn ’t add firewall entry" >> /var/ossec/logs/active -responses.log
60 fi
61 else
62 echo "Add/Delete Action Comparisons failed. No curl attempted." >> /var/ossec/logs/

active -responses.log
63 fi
64
65 #STATIC FLOW ACTION
66 if ["$ACTION" = "$ADDACTION"]; then
67 #get the switch ID that the alerting host is connected to by querying Floodlight
68 SWITCHID=‘curl --cacert /rest -cacert.pem --cert /ossec -selfsigned.crt --key /ossec -

selfsigned.key -s "https ://10.131.0.10:8081/ wm/device /?ipv4=$SRCIP" | jq -r ’.
devices [0]. attachmentPoint [0]. switch ’‘

69 #SWITCHID ="5e:3e:c4 :54:44:4f:2b:ba"
70
71 #Request flow insert for network response/reconfiguration vis secure REST Query:
72 FLOWRESPONSE=‘curl --cacert /rest -cacert.pem --cert /ossec -selfsigned.crt --key /

ossec -selfsigned.key -X POST -d "{\"switch\":\"$SWITCHID\", \"name\":\"$ALERTID
\", \"eth_type\":\"0x0800\", \"cookie\":\"0\", \"priority\":\"1\", \"in_port\"
:\"1\", \"active\":\"true\", \"actions\":\"output =1\"}" https
://10.131.0.10:8081/ wm/staticflowpusher/json ‘

73
74 #Log successful flow entry in Active Response log
75 if ["$FLOWRESPONSE" = ’{"status" : "Entry pushed"}’]; then
76 echo "BASH -START:$BASHSTARTTIME FLOW -ADD:‘date +%H:%M:%S.%N‘ SRCIP:$SRCIP ALERTID

:$4 RULEID:$5 AGENTNAME:$6" >> ${PWD }/../ logs/active -responses.log
77 fi
78
79 #Delete the flow to allow subsequent ones to actually reach the switch
80 curl -X DELETE -d ’{"name":"EXPERIMENT"}’ http ://10.131.0.10:8080/ wm/

staticflowpusher/json
81 else
82 echo "Add/Delete Action Comparisons failed. No logging attempted." >> /var/ossec/

logs/active -responses.log
83 fi

104

www.manaraa.com

Appendix G. Data Parsing

1 import java.util .*;
2 import java.io.*;
3 import java.sql.*;
4
5 class dataParser4 {
6
7 private static final String COMMA_DELIMITER = ",";
8 private static final String NEW_LINE_SEPERATOR = "\n";
9 private static final String COLUMN_HEADER = "trialnumber ,eps ,agent -id ,alert -id ,

alert -level ,start -time ,start -time -offset ,start -time -adjusted ,end -time ,
difference ,bashAR -start ,difference -ARbash";

10
11 public static void main(String [] args) {
12 Connection conn = null;
13 Statement stmt = null;
14 String fileNameArg = "";
15 String outputFileName = "";
16 String trialNumber = "";
17 String numEPS = "";
18 int logCount = 0;
19 int rawlogTotalCount = 0;
20 int rawlogExperimentCount = 0;
21 if (args.length > 0) {
22 try {
23 trialNumber = args [1];
24 fileNameArg = args [0] + trialNumber + "-";
25 String [] filenametokens = fileNameArg.split("-");
26 double numAgents = Double.parseDouble(filenametokens [0]);
27 double epsPerAgent = Double.parseDouble(filenametokens [1]);
28 numEPS = Double.toString(numAgents * epsPerAgent);
29 outputFileName = args [0] + "-";
30 // System.out.println (" Filename argument: " + fileNameArg);
31 } catch (Exception e) {
32 System.err.println("Invalid argument. Expect test string (e.g. 2-100-1");
33 System.exit (1);
34 }
35 }
36
37 //Get starting time
38 String startSeconds = "";
39 try {
40 String fullfile = fileNameArg + "startTime.txt";
41 System.out.println("Reading file: " + fullfile);
42 File file = new File(fileNameArg + "startTime.txt");
43 Scanner input = new Scanner(file);
44 String fullTime = input.next();
45 String [] tokens = fullTime.split(":");
46 startSeconds = tokens [2];
47 System.out.println("Starting time trimmed: " + startSeconds);
48 } catch (FileNotFoundException e) {
49 System.err.println("File not found.");
50 System.exit (1);
51 }
52
53 // Process everything else
54 try {
55 // Register mysql driver
56 Class.forName("com.mysql.jdbc.Driver");
57
58 //Open a connection
59 System.out.println("Connecting to database ...");
60 conn = DriverManager.getConnection("jdbc:mysql ://192.168.0.3:3306/ ossec","

ossecuser", "ossec");
61
62 //Build scanner for raw archive logs
63 File rawLogs = new File(fileNameArg + "rawLogs.txt");
64 Scanner rawLogScanner = new Scanner(rawLogs);
65
66 //Count number of raw archived logs
67 while(rawLogScanner.hasNext ()) {

105

www.manaraa.com

68 rawlogTotalCount ++;
69 String nextRawLine = rawLogScanner.nextLine ();
70 String [] rawLogTokens = nextRawLine.split(" +|[=]");
71 if(rawLogTokens.length == 21) {
72 rawlogExperimentCount ++;
73 }
74 }
75 //Build scanner for AR logs
76 File arLogs = new File(fileNameArg + "activeResponse.txt");
77 Scanner arLogScanner = new Scanner(arLogs);
78
79 System.out.println("Processings files: " + fileNameArg + "activeResponse.txt &

" + fileNameArg + "rawLogs.txt");
80
81 //Build headers on output csv file if it is the first trial
82 FileWriter fileWriter = new FileWriter(outputFileName + "data.csv", true);
83 if (trialNumber.equals("1")) {
84 fileWriter.append(COLUMN_HEADER.toString ());
85 fileWriter.append(NEW_LINE_SEPERATOR);
86 }
87
88 //While there are still log entries
89 while(arLogScanner.hasNext ()) {
90 logCount ++;
91 //Get and split AR log
92 String nextARLogLine = arLogScanner.nextLine ();
93 String [] rawARTokens = nextARLogLine.split("[:]");
94 String flowAddTime = rawARTokens [7];
95 String bashStartTime = rawARTokens [3];
96 String alertID = rawARTokens [11];
97 String agentId = rawARTokens [15]. replace("(", "").replace(")", "");
98
99 // Execute a sql query to get full log

100 stmt = conn.createStatement ();
101 String sql;
102 sql = "SELECT * FROM ossec.alert where alertid = ’" + alertID + "’";
103 ResultSet rs = stmt.executeQuery(sql);
104
105 // Extract data from result set
106 // Retrieve the entry
107 rs.next();
108 String full_log = rs.getString("full_log");
109
110 //DEBUG: Display values
111 // System.out.println (" alertID =" + alertID + " -- " + full_log);
112
113 //Clean -up environment
114 rs.close ();
115 stmt.close();
116
117 //Split the raw log
118 String [] rawLogTokens = full_log.split(" +|[=]");
119
120 //DEBUG token values
121 //for (int i = 0; i < rawLogTokens.length; i++) {
122 // System.out.println ("Token" + i + ": " + rawLogTokens[i]);
123 //}
124
125 String experimentid = rawLogTokens [12];
126 String alertLevel = rawLogTokens [10];
127 String timeoffset = rawLogTokens [14];
128
129 // Calculate the adjusted start time
130 double startTimeAdjustedDouble = Double.parseDouble(timeoffset);
131
132 // Calculate the flow add time difference
133 double timeDifference = Double.parseDouble(flowAddTime) -

startTimeAdjustedDouble;
134 // Compensate for wrapping on minute
135 if(timeDifference < 0) {
136 timeDifference = timeDifference + 60;
137 }
138

106

www.manaraa.com

139 // Calculate the bash start time difference
140 double timeDifferenceBash = Double.parseDouble(bashStartTime) -

startTimeAdjustedDouble;
141 // Compensate for wrapping on minute
142 if(timeDifferenceBash < 0) {
143 timeDifferenceBash = timeDifferenceBash + 60;
144 }
145
146 // Append all values to this row in csv
147 fileWriter.append(trialNumber);
148 fileWriter.append(COMMA_DELIMITER);
149 fileWriter.append(numEPS);
150 fileWriter.append(COMMA_DELIMITER);
151 fileWriter.append(agentId);
152 fileWriter.append(COMMA_DELIMITER);
153 fileWriter.append(experimentid);
154 fileWriter.append(COMMA_DELIMITER);
155 fileWriter.append(alertLevel);
156 fileWriter.append(COMMA_DELIMITER);
157 fileWriter.append(startSeconds);
158 fileWriter.append(COMMA_DELIMITER);
159 fileWriter.append(timeoffset);
160 fileWriter.append(COMMA_DELIMITER);
161 fileWriter.append(Double.toString(startTimeAdjustedDouble));
162 fileWriter.append(COMMA_DELIMITER);
163 fileWriter.append(flowAddTime);
164 fileWriter.append(COMMA_DELIMITER);
165 fileWriter.append(Double.toString(timeDifference));
166 fileWriter.append(COMMA_DELIMITER);
167 fileWriter.append(bashStartTime);
168 fileWriter.append(COMMA_DELIMITER);
169 fileWriter.append(Double.toString(timeDifferenceBash));
170 fileWriter.append(NEW_LINE_SEPERATOR);
171 } //END - no more logs to process
172
173 fileWriter.flush ();
174 fileWriter.close ();
175 conn.close();
176
177 System.out.println("Success. Output to " + outputFileName + "data.csv");
178
179
180 System.out.println("Processing cpu logs: " + fileNameArg + "cpuUsage.txt");
181 //Build scanner for CPU files
182 File osseccpuLog = new File(fileNameArg + "cpuUsage.txt");
183 Scanner osseccpuLogScanner = new Scanner(osseccpuLog);
184
185 File floodlightcpuLog = new File("/home/ubuntu/cpuUsage.log");
186 Scanner floodlightcpuLogScanner = new Scanner(floodlightcpuLog);
187
188 //Build csv writer
189 FileWriter fileWriter2 = new FileWriter(outputFileName + "cpu -data.csv", true);
190 if (trialNumber.equals("1")) {
191 fileWriter2.append("time ,ossec -cpu -usage ,floodlight -cpu -usage");
192 fileWriter2.append(NEW_LINE_SEPERATOR);
193 }
194 while(osseccpuLogScanner.hasNext () && floodlightcpuLogScanner.hasNext ()) {
195 //Get and split next cpu logs
196 String nextOssecCpuLogLine = osseccpuLogScanner.nextLine ();
197 String [] rawOssecCpuTokens = nextOssecCpuLogLine.split("[]");
198 String nextFloodlightCpuLogLine = floodlightcpuLogScanner.nextLine ();
199 String [] rawFloodlightCpuTokens = nextFloodlightCpuLogLine.split("[]");
200 // Append all values to this row in csv
201 fileWriter2.append(rawFloodlightCpuTokens [0]);
202 fileWriter2.append(COMMA_DELIMITER);
203 fileWriter2.append(rawOssecCpuTokens [1]);
204 fileWriter2.append(COMMA_DELIMITER);
205 fileWriter2.append(rawFloodlightCpuTokens [1]);
206 fileWriter2.append(NEW_LINE_SEPERATOR);
207 }
208 fileWriter2.flush();
209 fileWriter2.close();
210 System.out.println("Success. Output to " + outputFileName + "cpu -data.csv");

107

www.manaraa.com

211 System.out.println(logCount + " active response logs");
212 System.out.println(rawlogExperimentCount + " archived experiment raw logs");
213 System.out.println(rawlogTotalCount + " archived total raw logs");
214
215 } catch (FileNotFoundException e) {
216 System.err.println("File not found.");
217 System.exit (1);
218 } catch (IOException e) {
219 System.err.println("IO exception.");
220 System.exit (1);
221 } catch(SQLException se){
222 // Handle errors for JDBC
223 se.printStackTrace ();
224 }catch(Exception e){
225 // Handle errors for Class.forName
226 e.printStackTrace ();
227 } finally{
228 // finally block used to close resources
229 try{
230 if(stmt!=null)
231 stmt.close();
232 }catch(SQLException se2){
233 }// nothing we can do
234 try{
235 if(conn!=null)
236 conn.close();
237 }catch(SQLException se){
238 se.printStackTrace ();
239 }//end finally try
240 }//end try
241
242 }
243 }

108

www.manaraa.com

Appendix H. Networking Parameters

1 # /etc/sysctl.conf
2 # Increase system file descriptor limit
3 fs.file -max = 10000
4
5 # Discourage Linux from swapping idle processes to disk (default = 60)
6 vm.swappiness = 10
7
8 # Increase ephermeral IP ports
9 net.ipv4.ip_local_port_range = 10000 65000

10
11 # Increase Linux autotuning TCP buffer limits
12 # Set max to 16MB for 1GE and 32M (33554432) or 54M (56623104) for 10GE, letting the

kernel scale it based on RAM.
13 net.core.rmem_max = 16777216
14 net.core.wmem_max = 16777216
15 net.core.rmem_default = 16777216
16 net.core.wmem_default = 16777216
17 net.core.optmem_max = 40960
18 net.ipv4.tcp_rmem = 4096 87380 16777216
19 net.ipv4.tcp_wmem = 4096 65536 16777216
20
21 # Make room for more TIME_WAIT sockets due to more clients ,
22 # and allow them to be reused if we run out of sockets
23 # Also increase the max packet backlog
24 net.core.netdev_max_backlog = 50000
25 net.ipv4.tcp_max_syn_backlog = 30000
26 net.ipv4.tcp_max_tw_buckets = 2000000
27 net.ipv4.tcp_tw_reuse = 1
28 net.ipv4.tcp_fin_timeout = 10
29
30 # Disable TCP slow start on idle connections
31 net.ipv4.tcp_slow_start_after_idle = 0
32
33 # Also up the UDP limits
34 net.ipv4.udp_rmem_min = 8192
35 net.ipv4.udp_wmem_min = 8192
36
37 # Disable source routing and redirects
38 net.ipv4.conf.all.send_redirects = 0
39 net.ipv4.conf.all.accept_redirects = 0
40 net.ipv4.conf.all.accept_source_route = 0
41
42 # Log packets with impossible addresses for security
43 net.ipv4.conf.all.log_martians = 1
44
45 # /etc/security/limits.conf
46 # allow all users to open 10000 files
47 * soft nofile 10000
48 * hard nofile 10000
49
50 # /etc/ssh/sshd_config
51 # ensure we consult pam
52 UsePAM yes
53
54 # /etc/pam.d/sshd
55 # ensure pam includes our limits
56 session required pam_limits.so

109

www.manaraa.com

Appendix I. R Analysis Script: Tests 1-4

1 library(ggplot2)
2 library(plyr)
3 library(colorspace)
4 library(RColorBrewer)
5 library(reshape2)
6
7 # -- PLOTTING FUNTIONS --
8
9 #Creates scatter plot for the RT of each alert ID with multiple agents

10 #Points are colored by agent ID
11 createScatterPlotMulti <- function(dataset=NULL) {
12 ggplot(dataset , aes(x=alert.id , y=difference)) +
13 geom_point(shape=1, aes(color=agent.id)) +
14 labs(size=4, x="Alert ID",y="Response Time (s)", color="Agent ID") +
15 scale_color_brewer(palette = "Paired", labels = c("Agent 101", "Agent 102", "

Agent 103", "Agent 104"
16 , "Agent 105", "Agent 106", "

Agent 107", "Agent 108"
17 , "Agent 109", "Agent 110"))

+
18 theme_bw () +
19 theme(axis.text=element_text(size =12), axis.title=element_text(size=14,face="

bold"))
20 }
21
22 #Creates scatter plot of each alert ID for single agent
23 createScatterPlotSingle <- function(dataset=NULL) {
24 ggplot(dataset , aes(x=alert.id , y=difference)) +
25 geom_point(shape =1) +
26 labs(size=4, x="Alert ID",y="Response Time (s)") +
27 theme_bw () +
28 theme(axis.text=element_text(size =12), axis.title=element_text(size=14,face="bold

"))
29 }
30
31 #Creates scatter plot for the RT of each row in the dataset
32 #Index indicates the order processed in OSSEC
33 createScatterPlotIndex <- function(dataset=NULL) {
34 ggplot(dataset , aes(x=index , y=difference)) +
35 geom_point(shape =1) +
36 ggtitle("Individual Alert Response Time") +
37 labs(size=4, x="Alert Index",y="Response Time (s)") +
38 theme(axis.text=element_text(size =12), axis.title=element_text(size=14,face="bold

"),
39 plot.title = element_text(size = rel (2)))
40 }
41 # -- ALERT ID / INDEX PLOTTING ---
42
43 #Read and create data frames
44 input = "1-250- logonly2"
45 filename = paste(input , "-data.csv", sep="")
46 filepath = paste("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results \\",

filename , sep="")
47 results = read.csv(filepath)
48 createScatterPlotSingle(results)
49 input = "10-250- logonly"
50 filename = paste(input , "-data.csv", sep="")
51 filepath = paste("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results \\",

filename , sep="")
52 results = read.csv(filepath)
53 createScatterPlotMulti(results)
54 input = "10-1000- logonly"
55 filename = paste(input , "-data.csv", sep="")
56 filepath = paste("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results \\",

filename , sep="")
57 results = read.csv(filepath)
58
59 #Create index column
60 results$index = seq.int(nrow(results))
61 results$index = as.numeric(as.character(results$index))

110

www.manaraa.com

62
63 #Plot by alert ID and index ID
64 createScatterPlotSingle(results)
65 createScatterPlotIndex(results)
66
67 # -- 500 EPS Datasets ---
68
69 #Read and create data frames - New data (3 Jan 17) for 500 EPS
70 input = "10-50- NEWfirewallTRIALS"
71 filename = paste(input , "-data.csv", sep="")
72 filepath = paste("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results \\",

filename , sep="")
73 firewallresults = read.csv(filepath)
74 input = "10-50- NEWstaticTRIALS"
75 filename = paste(input , "-data.csv", sep="")
76 filepath = paste("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results \\",

filename , sep="")
77 staticresults = read.csv(filepath)
78 input = "10-50- NEWlogTRIALS"
79 filename = paste(input , "-data.csv", sep="")
80 filepath = paste("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results \\",

filename , sep="")
81 logresults = read.csv(filepath)
82 input = "10-50- NEWaclTRIALS"
83 filename = paste(input , "-data.csv", sep="")
84 filepath = paste("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results \\",

filename , sep="")
85 aclresults = read.csv(filepath)
86 input = "10-10- NEWacl20TRIALS"
87 filename = paste(input , "-data.csv", sep="")
88 filepath = paste("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results \\",

filename , sep="")
89 aclresults = read.csv(filepath)
90 input = "10-50- NEWacl10a"
91 filename = paste(input , "-data.csv", sep="")
92 filepath = paste("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results \\",

filename , sep="")
93 aclresults = read.csv(filepath)
94
95 #Read and create data frames - Original data (13 Dec 16) for 500 EPS
96 input = "10-50- lognosslTRIAL"
97 filename = paste(input , "-data.csv", sep="")
98 filepath = paste("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results \\",

filename , sep="")
99 logresults = read.csv(filepath)

100 input = "10-50- aclnosslTRIAL"
101 filename = paste(input , "-data.csv", sep="")
102 filepath = paste("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results \\",

filename , sep="")
103 aclresults = read.csv(filepath)
104 input = "10-50- firewallnosslTRIAL"
105 filename = paste(input , "-data.csv", sep="")
106 filepath = paste("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results \\",

filename , sep="")
107 firewallresults = read.csv(filepath)
108 input = "10-50- staticnosslTRIAL"
109 filename = paste(input , "-data.csv", sep="")
110 filepath = paste("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results \\",

filename , sep="")
111 staticresults = read.csv(filepath)
112
113 #Add rows to distingush type
114 logresults$type = "Log -Only"
115 aclresults$type = "ACL"
116 firewallresults$type = "Firewall"
117 staticresults$type = "Static Flow"
118
119 #Summary analysis on each type ’s RT measurement
120 logSE = summarySE(logresults , measurevar = "difference", groupvars = c("type"))
121 aclSE = summarySE(aclresults , measurevar = "difference", groupvars = c("type"))
122 firewallSE = summarySE(firewallresults , measurevar = "difference", groupvars = c("

type"))
123 staticSE = summarySE(staticresults , measurevar = "difference", groupvars = c("type"))

111

www.manaraa.com

124
125 #Combine the results
126 combinedresults = rbind(logresults , aclresults , firewallresults , staticresults)
127 combinedSE = rbind(logSE , aclSE , firewallSE , staticSE)
128
129 #Plot the mean response times with CI bars
130 ggplot(combinedSE , aes(x=type , y=difference)) +
131 geom_errorbar(aes(ymin=difference -ci, ymax=difference+ci), width =.5) +
132 geom_point () +
133 labs(size=4, x="SDN Response Type",y="Response Time (s)") +
134 theme_bw () +
135 theme(axis.text=element_text(size =12), axis.title=element_text(size=14,face="bold")

)
136
137 #Pairwise T-tests on type
138 pairwise.t.test(combinedresults$difference , combinedresults$type , p.adjust.method = "

holm")
139
140 # -- RESPONSE TIME PER TRIAL BOX PLOTS --------------------------------
141
142 #Boxplots per trial for each response type
143 ggplot(logresults , aes(factor(trialnumber), difference)) +
144 geom_boxplot () +
145 geom_jitter(alpha=.2, shape =16, size =1) +
146 labs(size=4, x="Trial #",y="Response Time (s)") +
147 theme_bw () +
148 theme(axis.text=element_text(size =12), axis.title=element_text(size=14,face="bold")

)
149 ggplot(aclresults , aes(factor(trialnumber), difference)) +
150 geom_boxplot () +
151 geom_jitter(alpha=.2, shape =16, size =1) +
152 labs(size=4, x="Trial #",y="Response Time (s)") +
153 theme_bw () +
154 theme(axis.text=element_text(size =12), axis.title=element_text(size=14,face="bold")

)
155 ggplot(firewallresults , aes(factor(trialnumber), difference)) +
156 geom_boxplot () +
157 geom_jitter(alpha=.2, shape =16, size =1) +
158 labs(size=4, x="Trial #",y="Response Time (s)") +
159 theme_bw () +
160 theme(axis.text=element_text(size =12), axis.title=element_text(size=14,face="bold")

)
161 ggplot(staticresults , aes(factor(trialnumber), difference)) +
162 geom_boxplot () +
163 geom_jitter(alpha=.2, shape =16, size =1) +
164 labs(size=4, x="Trial #",y="Response Time (s)") +
165 theme_bw () +
166 theme(axis.text=element_text(size =12), axis.title=element_text(size=14,face="bold")

)
167
168 #Box Plot for each method , consolidated trials
169 ggplot(combinedresults , aes(x=type , y=difference)) +
170 geom_boxplot () +
171 geom_jitter(alpha=.1, shape =16, size =.5) +
172 labs(size=4, x="SDN Response Type",y="Response Time (s)") +
173 theme_bw () +
174 theme(axis.text=element_text(size =12), axis.title=element_text(size=14,face="bold")

)
175
176 # - CPU DATA IMPORT AND SUMMARY --
177
178 input = "10-50- lognosslTRIAL"
179 filename = paste(input , "-cpu -data.csv", sep="")
180 filepath = paste("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results \\",

filename , sep="")
181 cpulogresults = read.csv(filepath)
182
183 input = "10-50- aclnosslTRIAL"
184 filename = paste(input , "-cpu -data.csv", sep="")
185 filepath = paste("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results \\",

filename , sep="")
186 cpuaclresults = read.csv(filepath)
187

112

www.manaraa.com

188 input = "10-50- firewallnosslTRIAL"
189 filename = paste(input , "-cpu -data.csv", sep="")
190 filepath = paste("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results \\",

filename , sep="")
191 cpufirewallresults = read.csv(filepath)
192
193 input = "10-50- staticnosslTRIAL"
194 filename = paste(input , "-cpu -data.csv", sep="")
195 filepath = paste("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results \\",

filename , sep="")
196 cpustaticresults = read.csv(filepath)
197
198 cpulogresults$type = "Log -Only"
199 cpuaclresults$type = "ACL"
200 cpufirewallresults$type = "Firewall"
201 cpustaticresults$type = "Static Flow"
202
203 ## Only include first second of each test
204 cpulogresults.firstten = cpulogresults[c(1,11,21 ,31,41 ,51,61,71 ,81,91) ,]
205 cpuaclresults.firstten = cpuaclresults[c(1,11,21 ,31,41 ,51,61,71 ,81,91) ,]
206 cpufirewallresults.firstten = cpufirewallresults[c(1,11,21 ,31,41,51 ,61,71,81 ,91) ,]
207 cpustaticresults.firstten = cpustaticresults[c(1,11 ,21,31,41 ,51,61,71 ,81,91) ,]
208
209 #Perform SE on each
210 cpulogSE = summarySE(cpulogresults.firstten , measurevar = "ossec.cpu.usage",

groupvars = c("type"))
211 cpuaclSE = summarySE(cpuaclresults.firstten , measurevar = "ossec.cpu.usage",

groupvars = c("type"))
212 cpufirewallSE = summarySE(cpufirewallresults.firstten , measurevar = "ossec.cpu.usage"

, groupvars = c("type"))
213 cpustaticSE = summarySE(cpustaticresults.firstten , measurevar = "ossec.cpu.usage",

groupvars = c("type"))
214
215 cpuresultscombined.ALL = rbind(cpulogresults , cpustaticresults , cpuaclresults ,

cpufirewallresults)
216 #cpuresultscombined.SUBSET = rbind(subset(cpulogresults , ossec.cpu.usage > .3),

subset(cpuaclresults , ossec.cpu.usage > 1), subset(cpufirewallresults , ossec.cpu.
usage > 1), subset(cpustaticresults , ossec.cpu.usage > 1))

217 cpuresultscombined.FIRSTTEN = rbind(cpulogresults.firstten , cpustaticresults.firstten
, cpuaclresults.firstten , cpufirewallresults.firstten)

218 cpuOSSECcombinedSE = rbind(cpulogSE , cpuaclSE , cpufirewallSE , cpustaticSE)
219
220 ## CI on means - first ten only OSSEC cpu
221 ggplot(cpuOSSECcombinedSE , aes(x=type , y=ossec.cpu.usage)) +
222 geom_errorbar(aes(ymin=ossec.cpu.usage -ci, ymax=ossec.cpu.usage+ci), width =.5) +
223 geom_point () +
224 ggtitle("") +
225 labs(size=4, x="SDN Response Type",y="CPU Utilization (%)") +
226 theme(axis.text=element_text(size =12), axis.title=element_text(size=14,face="bold")

, plot.title = element_text(size = rel (2)))
227
228 # - CPU DATA JITTER PLOTS (APPENDIX)

229
230 ## jitter plot ALL points OSSEC CPU
231 ggplot(cpuresultscombined.ALL , aes(x=type , y=ossec.cpu.usage)) +
232 geom_point () +
233 geom_jitter () +
234 labs(size=4, x="SDN Response Type",y="CPU Utilization (%)") +
235 theme_bw () +
236 theme(axis.text=element_text(size =12), axis.title=element_text(size=14,face="bold")

)
237
238 ## jitter plot ALL points Floodlight CPU
239 ggplot(cpuresultscombined.ALL , aes(x=type , y=floodlight.cpu.usage)) +
240 geom_point () +
241 geom_jitter () +
242 labs(size=4, x="SDN Response Type",y="CPU Utilization (%)") +
243 theme_bw () +
244 theme(axis.text=element_text(size =12), axis.title=element_text(size=14,face="bold")

)
245
246 ## jitter plot FIRST TEN points OSSEC CPU

113

www.manaraa.com

247 ggplot(cpuresultscombined.FIRSTTEN , aes(x=type , y=ossec.cpu.usage)) +
248 geom_point () +
249 geom_jitter () +
250 labs(size=4, x="SDN Response Type",y="CPU Utilization (%)") +
251 theme_bw () +
252 theme(axis.text=element_text(size =12), axis.title=element_text(size=14,face="bold")

)
253
254 ## jitter plot FIRST TEN points Floodlight CPU
255 ggplot(cpuresultscombined.FIRSTTEN , aes(x=type , y=floodlight.cpu.usage)) +
256 geom_point () +
257 geom_jitter () +
258 labs(size=4, x="SDN Response Type",y="CPU Utilization (%)") +
259 theme_bw () +
260 theme(axis.text=element_text(size =12), axis.title=element_text(size=14,face="bold")

)
261
262 # - CPU BOXPLOTS ---
263
264 #Prep and reshape dataframe
265 cpuresultscombined.FIRSTTEN = rename(cpuresultscombined.FIRSTTEN , c("floodlight.cpu.

usage"="Floodlight", "ossec.cpu.usage"="OSSEC"))
266 cpuresultscombined.FIRSTTEN = melt(cpuresultscombined.FIRSTTEN)
267 cpuresultscombined.FIRSTTEN = rename(cpuresultscombined.FIRSTTEN , c("variable"="

server"))
268 cpuresultscombined.FIRSTTEN.SE = summarySE(cpuresultscombined.FIRSTTEN , measurevar =

"value", groupvars = c("type", "server"))
269
270 ### boxplot -bothservers -expected
271 ggplot(cpuresultscombined.FIRSTTEN , aes(x=type , y=value , color=server)) +
272 geom_boxplot () +
273 labs(size=4, x="SDN Response Type",y="CPU Utilization (%)",color="Server") +
274 theme_bw () +
275 theme(axis.text=element_text(size =12), axis.title=element_text(size=14,face="bold")

)
276
277 ## CI on means - both OSSEC and FLOODLIGHT
278 ggplot(cpuresultscombined.FIRSTTEN.SE, aes(x=type , y=value , color=server)) +
279 geom_errorbar(aes(ymin=value -ci, ymax=value+ci), width =.5) +
280 geom_point () +
281 labs(size=4, x="SDN Response Type",y="CPU Utilization (%)",color="Server") +
282 theme_bw () +
283 theme(axis.text=element_text(size =12), axis.title=element_text(size=14,face="bold")

)
284
285 ## -- CPU ANOVA ---
286
287 cpuresultsOSSECcombined = subset(cpuresultscombined.FIRSTTEN , cpuresultscombined.

FIRSTTEN$server == "OSSEC")
288 cpuresultsFLOODLIGHTcombined = subset(cpuresultscombined.FIRSTTEN , cpuresultscombined

.FIRSTTEN$server == "Floodlight")
289 anova(lm(value ~ type , data = cpuresultsOSSECcombined))
290 anova(lm(value ~ type , data = cpuresultsFLOODLIGHTcombined))
291 pairwise.t.test(cpuresultsOSSECcombined$value , cpuresultsOSSECcombined$type , p.adjust

.method = "holm")
292 pairwise.t.test(cpuresultsFLOODLIGHTcombined$value , cpuresultsFLOODLIGHTcombined$type

, p.adjust.method = "holm")
293
294 ## -- POWER T-TEST ---
295
296 power.t.test(sd = .3667 , delta = .02, power = .90)

114

www.manaraa.com

Appendix J. R Analysis Script: Load Tests

1 library(ggplot2)
2 library(plyr)
3
4 ## Create Summary function
5 ## Summarizes data.
6 ## Gives count , mean , standard deviation , standard error of the mean , and confidence

interval (default 95%).
7 ## data: a data frame.
8 ## measurevar: the name of a column that contains the variable to be summariezed
9 ## groupvars: a vector containing names of columns that contain grouping variables

10 ## na.rm: a boolean that indicates whether to ignore NA ’s
11 ## conf.interval: the percent range of the confidence interval (default is 95%)
12 ## AUTHOR: http :// www.cookbook -r.com/Manipulating_data/Summarizing_data/
13 summarySE <- function(data=NULL , measurevar , groupvars=NULL , na.rm=FALSE , conf.

interval =.95, .drop=TRUE) {
14
15 # New version of length which can handle NA ’s: if na.rm==T, don ’t count them
16 length2 <- function (x, na.rm=FALSE) {
17 if (na.rm) sum(!is.na(x))
18 else length(x)
19 }
20
21 # This does the summary. For each group ’s data frame , return a vector with
22 # N, mean , and sd
23 datac <- ddply(data , groupvars , .drop=.drop ,
24 .fun = function(xx , col) {
25 c(N = length2(xx[[col]], na.rm=na.rm),
26 mean = mean (xx[[col]], na.rm=na.rm),
27 sd = sd (xx[[col]], na.rm=na.rm)
28)
29 },
30 measurevar
31)
32
33 # Rename the "mean" column
34 datac <- rename(datac , c("mean" = measurevar))
35
36 datac$se <- datac$sd / sqrt(datac$N) # Calculate standard error of the mean
37
38 # Confidence interval multiplier for standard error
39 # Calculate t-statistic for confidence interval:
40 # e.g., if conf.interval is .95, use .975 (above/below), and use df=N-1
41 ciMult <- qt(conf.interval /2 + .5, datac$N -1)
42 datac$ci <- datac$se * ciMult
43
44 return(datac)
45 }
46
47 #Given data frame , returns plot of response time difference vs EPS
48 createPlotEpsxDiff <- function(dataset=NULL , labeltext=NULL , xpos=0, ypos =0) {
49 ggplot(dataset , aes(x=eps , y=difference)) +
50 geom_errorbar(aes(ymin=difference -ci, ymax=difference+ci), width =5) +
51 geom_line(col="blue", size =1) +
52 geom_smooth(method=lm , color="red", se=TRUE) +
53 geom_text(data = NULL , x = xpos , y = ypos , label=labeltext) +
54 geom_point () +
55 geom_ribbon(aes(ymin=difference -ci, ymax=difference+ci), alpha =0.2) +
56 labs(size=4, x="Events Per Second",y="Response Time (s)") +
57 theme_bw () +
58 theme(axis.text=element_text(size =12), axis.title=element_text(size=14,face="bold

"))
59 }
60
61 #Given consolidated data frame with every response type , plots time difference vs EPS
62 createPlotALL <- function(dataset=NULL) {
63 ggplot(dataset , aes(x=eps , y=difference , fill=type , linetype=type)) +
64 geom_errorbar(aes(ymin=difference -ci, ymax=difference+ci), width =5) +
65 geom_line () +
66 geom_point () +
67 geom_ribbon(aes(ymin=difference -ci, ymax=difference+ci), alpha =0.2) +

115

www.manaraa.com

68 labs(size=4, x="Events Per Second",y="Response Time (s)",fill="Type",linetype="
Type") +

69 theme_bw () +
70 theme(axis.text=element_text(size =12), axis.title=element_text(size=14,face="bold

"))
71 }
72
73 # - NEW LOG ONLY --
74
75 log .10.1 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results

\\10-1- NEWlog20TRIALS -data.csv")
76 #log .10.10 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results

\\10-10- logonly -data.csv")
77 #log .10.100 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results

\\10-100 - logonly -data.csv")
78 log .10.10 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results

\\10-10- NEWlog20TRIALS -data.csv")
79 log .10.100 = read.csv("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results

\\10-100 - NEWlog10TRIALS -data.csv")
80 log .10.250 = read.csv("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results

\\10-250 - logonly -data.csv")
81 log .10.500 = read.csv("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results

\\10-500 - logonly -data.csv")
82 log .10.750 = read.csv("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results

\\10-750 - logonly -data.csv")
83 log .10.1000 = read.csv("C:\\ Users \\ jgoodgion \\ Google Drive \\AFIT\\ Research \\ Results

\\10 -1000 - logonly -data.csv")
84
85 logCombined = rbind(log .10.1000 , log .10.750 , log .10.500 , log .10.250 , log .10.100 , log

.10.10 , log .10.1)
86 logCombined$type = "Log -Only"
87
88 logStressSE = summarySE(logCombined , measurevar = "difference", groupvars = c("type",

"eps"))
89
90 createPlotEpsxDiff(dataset = logStressSE)
91
92 # - FIREWALL --
93
94 firewall .10.1 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results

\\10-1- NEWfirewall20TRIALSSS -data.csv")
95 #firewall .10.10 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive\\AFIT\\ Research \\

Results \\10-10- firewallnossl2 -data.csv")
96 firewall .10.100 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive \\AFIT\\ Research \\

Results \\10 -100- firewallssl3 -data.csv")
97 firewall .10.10 = read.csv("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\

Results \\10-10- NEWfirewall20TRIALSS -data.csv")
98 #firewall .10.100 = read.csv("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\

Results \\10 -100- NEWfirewall10TRIALSS -data.csv")
99 #firewall .10.250 = read.csv("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\

Results \\10 -250- firewallssl -data.csv")
100 firewall .10.250 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive \\AFIT\\ Research \\

Results \\10 -250- NEWfirewall5TRIALS -data.csv")
101 firewall .10.500 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive \\AFIT\\ Research \\

Results \\10 -500- firewallssl -data.csv")
102 firewall .10.750 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive \\AFIT\\ Research \\

Results \\10 -750- firewall3 -data.csv")
103 firewall .10.1000 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive \\AFIT\\ Research \\

Results \\10 -1000 - firewall -data.csv")
104
105 # fix EPS column
106 firewall .10.10 $eps = 100
107 firewall .10.100 $eps = 1000
108 firewall .10.250 $eps = 2500
109 firewall .10.500 $eps = 5000
110 firewall .10.750 $eps = 7500
111 firewall .10.1000 $eps = 10000
112 #firewall .10.2500 $eps = 25000
113
114 firewallCombined = rbind(firewall .10.1000 , firewall .10.750 , firewall .10.500 , firewall

.10.250 , firewall .10.100 , firewall .10.10 , firewall .10.1)
115 firewallCombined$type = "Firewall"
116

116

www.manaraa.com

117 firewallStressSE = summarySE(firewallCombined , measurevar = "difference", groupvars =
c("type","eps"))

118 #firewallStressBashSE = summarySE(firewallCombinedSE , measurevar = "difference.ARbash
", groupvars = "eps")

119
120 createPlotEpsxDiff(dataset=firewallStressSE)
121
122 # - ACL --
123
124 acl .10.1 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results

\\10-1- NEWacl20TRIALS -data.csv")
125 #acl .10.10 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results

\\10-10- aclnossl -data.csv")
126 #acl .10.100 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results

\\10-100 - aclnossl -data.csv")
127 acl .10.10 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results

\\10-10- NEWacl20TRIALS -data.csv")
128 acl .10.100 = read.csv("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results

\\10-100 - NEWacl10TRIALSS -data.csv")
129 acl .10.250 = read.csv("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results

\\10-250 - aclnossl -data.csv")
130 acl .10.500 = read.csv("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results

\\10-500 - aclnossl -data.csv")
131 acl .10.750 = read.csv("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results

\\10-750 - aclnossl -data.csv")
132 acl .10.1000 = read.csv("C:\\ Users \\ jgoodgion \\ Google Drive \\AFIT\\ Research \\ Results

\\10 -1000 - aclnossl -data.csv")
133 #acl .10.2500 = read.csv("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results

\\10 -2500 - firewall -data.csv")
134
135 aclCombined = rbind(acl .10.1000 , acl .10.750 , acl .10.500 , acl .10.250 , acl .10.100 , acl

.10.10 , acl .10.1)
136 aclCombined$type = "ACL"
137
138 aclStressSE = summarySE(aclCombined , measurevar = "difference", groupvars = c("type",

"eps"))
139 #aclStressBashSE = summarySE(aclCombined , measurevar = "difference.ARbash", groupvars

= "eps")
140
141 createPlotEpsxDiff(dataset = aclStressSE)
142
143 # - STATIC FLOW --
144
145 static .10.1 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results

\\10-1- NEWstatic20TRIALS -data.csv")
146 #static .10.10 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive \\AFIT\\ Research \\ Results

\\10-10- staticflownossl -data.csv")
147 #static .10.100 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive \\AFIT\\ Research \\

Results \\10 -100- staticflownossl -data.csv")
148 static .10.10 = read.csv("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results

\\10-10- NEWstatic20TRIALS -data.csv")
149 static .10.100 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive \\AFIT\\ Research \\ Results

\\10-100 - NEWstatic10TRIALS -data.csv")
150 #static .10.250 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive \\AFIT\\ Research \\

Results \\10 -250- staticflownossl -data.csv")
151 #static .10.250 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive \\AFIT\\ Research \\

Results \\10 -250- NEWstatic5TRIALS -data.csv")
152 static .10.250 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive \\AFIT\\ Research \\ Results

\\10-250 - NEWstatic1TRIAL -data.csv")
153 static .10.500 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive \\AFIT\\ Research \\ Results

\\10-500 - staticflownossl -data.csv")
154 static .10.750 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive \\AFIT\\ Research \\ Results

\\10-750 - staticflownossl -data.csv")
155 static .10.1000 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive \\AFIT\\ Research \\

Results \\10 -1000 - staticflownossl -data.csv")
156
157 staticCombined = rbind(static .10.1000 , static .10.750 , static .10.500 , static .10.250 ,

static .10.100 , static .10.10 , static .10.1)
158 staticCombined$type = "Static Flow"
159
160 staticStressSE = summarySE(staticCombined , measurevar = "difference", groupvars = c("

type","eps"))
161 createPlotEpsxDiff(dataset = staticStressSE)

117

www.manaraa.com

162
163 # - ALL TYPES COMBINED --
164
165 #test boxplot
166 loadtest.ALL.RAW = rbind(staticCombined , logCombined , firewallCombined , aclCombined)
167 loadtest.ALL.RAW$eps = as.factor(loadtest.ALL.RAW$eps)
168 ggplot(loadtest.ALL.RAW , aes(x=eps , y=difference , fill=type)) +
169 geom_boxplot () +
170 ggtitle("") +
171 labs(size=4, x="EPS Level",y="Response Time (s)") +
172 theme(axis.text=element_text(size =12), axis.title=element_text(size=14,face="bold")

, plot.title = element_text(size = rel (2)))
173
174 #Line plots RT all combined load test
175 allCombinedSE = rbind(aclStressSE , firewallStressSE , staticStressSE , logStressSE)
176 createPlotALL(dataset = allCombinedSE)
177
178 # Calculating the biggest gap
179 allCombinedSE [12, "difference"] - allCombinedSE [12, "ci"] - allCombinedSE [24, "

difference"] + allCombinedSE [24, "ci"]
180
181
182 # --- CPU ALL --
183 input = "cpu -all"
184 filename = paste(input , ".csv", sep="")
185 filepath = paste("C:\\ Users \\ jgoodgion \\ Google Drive\\AFIT\\ Research \\ Results \\",

filename , sep="")
186 cpuALL = read.csv(filepath)
187
188 ggplot(cpuALL , aes(x=eps , y=cpu.ossec , fill=type , linetype=type , color=type)) +
189 ylim (0 ,100) +
190 geom_line () +
191 geom_point () +
192 labs(size=4, x="Events Per Second",y="CPU Utilization (%)",fill="Type", linetype="

Type", color="Type") +
193 theme_bw () +
194 theme(axis.text=element_text(size =12), axis.title=element_text(size=14,face="bold")

)
195
196 # - REGRESSION MODELS --
197
198 regressionACL = lm(difference ~ eps , data = aclStressSE)
199 regressionFIREWALL = lm(difference ~ eps , data = firewallStressSE)
200 regressionLOG = lm(difference ~ eps , data = logStressSE)
201 regressionSTATIC = lm(difference ~ eps , data = staticStressSE)
202
203 coeffACL = round(regressionACL$coefficients , 5)
204 modelText = paste("Model : ", coeffACL [1] , " + " , coeffACL [2] , "*x" , "\n\n" , "P-

value adjusted = ",round(summary(regressionACL)$adj.r.squared ,2))
205 createPlotEpsxDiff(dataset = aclStressSE , labeltext = modelText , xpos = 2500, ypos =

3)
206
207 coeffFIREWALL = round(regressionFIREWALL$coefficients , 5)
208 modelText = paste("Model : ", coeffFIREWALL [1] , " + " , coeffFIREWALL [2] , "*x" , "\

n\n" , "P-value adjusted = ",round(summary(regressionFIREWALL)$adj.r.squared ,2))
209 createPlotEpsxDiff(dataset = firewallStressSE , labeltext = modelText , xpos = 2500,

ypos = 6)
210
211 coeffLOG = round(regressionLOG$coefficients , 5)
212 modelText = paste("Model : ", coeffLOG [1] , " + " , coeffLOG [2] , "*x" , "\n\n" , "P-

value adjusted = ",round(summary(regressionLOG)$adj.r.squared ,2))
213 createPlotEpsxDiff(dataset = logStressSE , labeltext = modelText , xpos = 2500, ypos =

1.1)
214
215 coeffSTATIC = round(regressionSTATIC$coefficients , 5)
216 modelText = paste("Model : ", coeffSTATIC [1] , " + " , coeffSTATIC [2] , "*x" , "\n\n"

, "P-value adjusted = ",round(summary(regressionSTATIC)$adj.r.squared ,2))
217 createPlotEpsxDiff(dataset = staticStressSE , labeltext = modelText , xpos = 2500, ypos

= 3.5)
218
219 confint(regressionACL)
220 confint(regressionSTATIC)
221 confint(regressionLOG)

118

www.manaraa.com

222 confint(regressionFIREWALL)
223
224 #combined model
225 loadtest.ALL.RAW$type = as.factor(loadtest.ALL.RAW$type)
226 allRAWSE = summarySE(loadtest.ALL.RAW , measurevar = "difference", groupvars = c("eps"

))
227 regressionALLRAW = lm(difference ~ eps * type - 1, data = loadtest.ALL.RAW)
228 summary(regressionALLRAW)
229 coeffALLRAW = round(regressionALLRAW$coefficients , 5)
230 modelText = paste("Model : ", coeffALLRAW [1] , " + " , coeffALLRAW [2] , "*x" , "\n\n"

, "P-value adjusted = ",round(summary(regressionALLRAW)$adj.r.squared ,2))
231 ggplot(loadtest.ALL.RAW , aes(x=eps , y=difference , group = 1)) +
232 geom_smooth(method=lm, formula = loadtest.ALL.RAW$difference ~ loadtest.ALL.RAW$eps

+ loadtest.ALL.RAW$type - 1, color="red", se=TRUE) +
233 ggtitle("") +
234 labs(size=4, x="EPS Level",y="Response Time (s)") +
235 theme(axis.text=element_text(size =12), axis.title=element_text(size=14,face="bold")

, plot.title = element_text(size = rel (2)))
236
237 #plotting the sample custom function
238 fun.1 <- function(x) .8 * (.42869 + .00007 * x) + .05 * (.46778 + .00033 * x) +

.05 * (.23732 + .00059 * x) + .1 * (.49669 + .00027 * x)
239 fun.high <- function(x) .8 * (.52737 + .00009 * x) + .05 * (.85834 + .00040 * x) +

.05 * (.98458 + .00072 * x) + .1 * (.68054 + .00030 * x)
240 fun.low <- function(x) .8 * (.33000 + .00005 * x) + .05 * (.07721 + .00024 * x) +

.05 * (-.50995 + .00045 * x) + .1 * (.31284 + .00025 * x)
241
242 ggplot(data.frame(x = 0), aes(x = x)) +
243 stat_function(fun = fun.1) +
244 xlim(0, 10000) +
245 ylim (0.0, 2.5) +
246 labs(size=4, x="EPS Level",y="Response Time (s)") +
247 theme_bw () +
248 theme(axis.text=element_text(size =12), axis.title=element_text(size=14,face="bold")

, legend.position="none")
249
250
251 #Inputting and plotting the dynamic test data
252 dynamic .10.500 = read.csv("C:\\ Users\\ jgoodgion \\ Google Drive\\AFIT\\ Research \\

Results \\10 -500- NEWdynamic2 -data.csv")
253 dynamicSE = summarySE(dynamic .10.250 , measurevar = "difference", groupvars = c("eps")

)
254
255 ggplot(data.frame(x = 0), aes(x = x)) +
256 stat_function(fun = fun.1) +
257 stat_function(fun = fun.high , aes(colour = "red")) +
258 stat_function(fun = fun.low , aes(colour = "red")) +
259 geom_point(aes(x = 5000, y = 1.04), shape=4, color="blue", size =5) +
260 xlim(0, 10000) +
261 ylim (0.0, 2.5) +
262 labs(size=4, x="EPS Level",y="Response Time (s)") +
263 theme_bw () +
264 theme(axis.text=element_text(size =12), axis.title=element_text(size=14,face="bold")

, legend.position="none")
265
266
267 # - INDIVIDUAL ALERT MODELS --
268
269 static .10.750 $index = seq.int(nrow(static .10.750))
270 ggplot(static .10.750 , aes(x=index , y=difference)) +
271 geom_point(size =1) +
272 ggtitle("Linear Model of Increasing Individual Alerts") +
273 xlim (0 ,10000) +
274 ylim(0, 6) +
275 labs(size=4, x="Alert ID",y="Response Time (s)") +
276 geom_smooth(method=lm, formula=y~x, color="red", fullrange=TRUE) +
277 theme(axis.text=element_text(size =12), axis.title=element_text(size=14,face="bold")

, plot.title = element_text(size = rel (2)))

119

www.manaraa.com

Appendix K. Trial Ranges

Figure 34. Static Flow RT quartile ranges (per trial at 500 EPS)

Figure 35. Log-Only RT quartile ranges (per trial at 500 EPS)

120

www.manaraa.com

Figure 36. Firewall RT quartile ranges (per trial at 500 EPS)

Figure 37. ACL RT quartile ranges (per trial at 500 EPS)

121

www.manaraa.com

Appendix L. CPU Data Reduction

Figure 38. All OSSEC CPU utilization measurements (500 EPS)

Figure 39. Reduced OSSEC CPU utilization measurements (500 EPS)

122

www.manaraa.com

Figure 40. All Floodlight CPU utilization measurements (500 EPS)

Figure 41. Reduced Floodlight CPU utilization measurements (500 EPS)

123

www.manaraa.com

Appendix M. Threat Level Classification

Table 11. Internal OSSEC threat level classification descriptors [7]

Level Description

01 None

02
System low priority notification - System notification or status messages. They

have no security relevance.

03
Successful/Authorized events - They include successful login attempts, firewall

allow events, etc.

04
System low priority error - Errors related to bad configurations or unused

devices/applications. They have no security relevance and are usually caused by
default installations or software testing.

05
User generated error - They include missed passwords, denied actions, etc. By

itself they have no security relevance.

06
Low relevance attack - They indicate a worm or a virus that have no affect to the
system (like code red for apache servers, etc). They also include frequently IDS

events and frequently errors.

07
Bad word matching. They include words like bad, error, etc. These events are

most of the time unclassified and may have some security relevance.

08

First time seen - Include first time seen events. First time an IDS event is fired or
the first time an user logged in. If you just started using OSSEC HIDS these

messages will probably be frequently. After a while they should go away, It also
includes security relevant actions (like the starting of a sniffer or something like

that).

09
Error from invalid source - Include attempts to login as an unknown user or from
an invalid source. May have security relevance (specially if repeated). They also

include errors regarding the admin (root) account.

10
Multiple user generated errors - They include multiple bad passwords, multiple
failed logins, etc. They may indicate an attack or may just be that a user just

forgot his credencials.

11

Integrity checking warning - They include messages regarding the modification of
binaries or the presence of rootkits (by rootcheck). If you just modified your

system configuration you should be fine regarding the syscheck messages. They
may indicate a successful attack. Also included IDS events that will be ignored

(high number of repetitions).

12
High importancy event - They include error or warning messages from the system,

kernel, etc. They may indicate an attack against a specific application.

13
Unusual error (high importance) - Most of the times it matches a common attack

pattern.

14
High importance security event. Most of the times done with correlation and it

indicates an attack.

15 Severe attack - No chances of false positives. Immediate attention is necessary.

124

www.manaraa.com

Bibliography

1. D. Kreutz, F. M.V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig. Software-defined networking: A comprehensive survey. Proceedings
of the IEEE, 103(1):14–76, 2015.

2. N. McKeown. Making SDNs Work. Retrieved on October 1, 2016. URL http:
// yuba.stanford.edu/ ∼nickm/ talks/ ONS 2012.ppt .

3. S. Hernan, S. Lambert, and T. Ostwald. Uncover Security Design Flaws using
The STRIDE Approach. MSDN Magazine-Louisville, (1):1–8, 2006.

4. B. Lhotsky. Instant OSSEC Host-based Intrusion Detection. Packt Publishing
Ltd, Birmingham, UK, 2013.

5. Pivotal. RabbitMQ Features. Retrieved June 1, 2016. URL https:// www.
rabbitmq.com/ features.html .

6. M. Todd. Dynamic Network Security Control. Master’s thesis, Air Force Institute
of Technology, Wright-Patterson Air Force Base, OH, USA, 2015. URL https:
// www.afit.edu/ docs/ AFIT-ENG-MS-16-M-049.pdf .

7. R. Izard. Project Floodlight Documentation. Retrieved August 25,
2016. URL https:// floodlight.atlassian.net/ wiki/ display/ floodlightcontroller/
Floodlight+Documentation.

8. Symantec. Internet Security Threat Report 2016. Technical report,
2016. URL https:// www.symantec.com/ content/ dam/ symantec/ docs/ reports/
istr-21-2016-en.pdf .

9. Verizon. 2016 Data Breach Investigations Report. Technical report,
2016. URL http:// www.verizonenterprise.com/ resources/ reports/ rp DBIR
2016 Report en xg.pdf .

10. PCI Security Standards Council. PCI DSS v3.1 PCI Quick Reference Guide.
Retrieved December 20, 2016. URL https:// www.pcisecuritystandards.org/
documents/ PCIDSS QRGv3 1.pdf .

11. Y. Rechtman and K. Rashbaum. HIPAA security rule - Demystified. The CPA
Journal, pages 68–70, 2015.

12. H. Farhady, H. Lee, and A. Nakao. Software-Defined Networking: A survey.
Computer Networks, 81:79–95, 2015.

13. M. Mehta and B. Ives. Storage Area Networks. Communications of the Associa-
tion for Information Systems, 14(1):70–71, 2004.

125

http://yuba.stanford.edu/~nickm/talks/ONS_2012.ppt
http://yuba.stanford.edu/~nickm/talks/ONS_2012.ppt
https://www.rabbitmq.com/features.html
https://www.rabbitmq.com/features.html
https://www.afit.edu/docs/AFIT-ENG-MS-16-M-049.pdf
https://www.afit.edu/docs/AFIT-ENG-MS-16-M-049.pdf
https://floodlight.atlassian.net/wiki/display/floodlightcontroller/Floodlight+Documentation
https://floodlight.atlassian.net/wiki/display/floodlightcontroller/Floodlight+Documentation
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
http://www.verizonenterprise.com/resources/reports/rp_DBIR_2016_Report_en_xg.pdf
http://www.verizonenterprise.com/resources/reports/rp_DBIR_2016_Report_en_xg.pdf
https://www.pcisecuritystandards.org/documents/PCIDSS_QRGv3_1.pdf
https://www.pcisecuritystandards.org/documents/PCIDSS_QRGv3_1.pdf

www.manaraa.com

14. M. Casado, M. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker. Ethane:
taking control of the enterprise. Sigcomm ’07, pages 1–12, 2007.

15. Open Networking Foundation. Software-Defined Networking: The New Norm for
Networks [white paper], 2012. URL https:// www.opennetworking.org/ images/
stories/ downloads/ sdn-resources/ white-papers/ wp-sdn-newnorm.pdf .

16. P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, and B. Lantz.
ONOS: towards an open, distributed SDN OS. Proceedings of the third workshop
on Hot topics in software defined networking - HotSDN ’14, pages 1–6, 2014.

17. F. Long, Z. Sun, Z. Zhang, H. Chen, and L. Liao. Research on TCAM-based
Openflow switch platform. In 2012 International Conference on Systems and
Informatics, ICSAI 2012, pages 1218–1221, 2012.

18. H. Yin, H. Xie, T. Tsou, P. Aranda, D. Lopez, and R. Sidi. SDNi: A Message
Exchange Protocol for Software Defined Networks (SDNs). Internet Research
Task Force, pages 1–14, 2012.

19. B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross,
A. Wang, J. Stringer, P. Shelar, K. Amidon, A. Networks, and M. Casado. The
Design and Implementation of Open vSwitch. 12th USENIX Symposium of Net-
worked Systems Design and Implementation, pages 117–130, 2015.

20. T. Elhourani, S. Ramasubramanian, and A. Kvalbein. IP Fast Rerouting for
Multi-Link Failure. In Networking IEEE/ACM Transactions, pages 3014–3025,
2016.

21. T-Mobile. Video Streaming Without Using Your 4G LTE Data. Retrieved Jan-
uary 4, 2017. URL https:// www.t-mobile.com/ offer/ binge-on-streaming-video.
html .

22. E. Etherton. Eli the Computer Guy Collection. Retrieved December 1, 2015.
URL https:// www.udemy.com/ eli-the-computer-guy-collection/ index.html .

23. S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali. On scalability of software-
defined networking. IEEE Communications Magazine, 51(2):136–141, 2013.

24. M. Kobayashi, S. Seetharaman, G. Parulkar, G. Appenzeller, J. Little, J. Van Rei-
jendam, P. Weissmann, and N. McKeown. Maturing of OpenFlow and Software-
defined Networking through deployments. Computer Networks, 61:151–175, 2014.

25. Z. Michael, D. Allan, M. Cohn, N. Damouny, C. Kolias, J. Maguire, S. Manning,
D. McDysan, E. Roch, and M. Shirazipour. OpenFlow-enabled SDN and Network
Functions Virtualization. Open Network Foundation, pages 1–12, 2014.

126

https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.t-mobile.com/offer/binge-on-streaming-video.html
https://www.t-mobile.com/offer/binge-on-streaming-video.html
https://www.udemy.com/eli-the-computer-guy-collection/index.html

www.manaraa.com

26. E. Keller, S. Ghorbani, M. Caesar, and J. Rexford. Live migration of an entire
network (and its hosts). Proceedings of the 11th ACM Workshop on Hot Topics
in Networks - HotNets-XI, pages 109–114, 2012.

27. C. Dixon, D. Olshefski, V. Jain, C. DeCusatis, W. Felter, J. Carter,
M. Banikazemi, V. Mann, J. M. Tracey, and R. Recio. Software defined net-
working to support the software defined environment. IBM Journal of Research
and Development, 58(2):1–14, 2014.

28. R. Klöti, V. Kotronis, and P. Smith. OpenFlow: A security analysis. In Proceed-
ings - International Conference on Network Protocols, ICNP, pages 1–6, 2013.

29. A.G. Fallis. Security Analysis of the Open Networking Foundation (ONF) Open-
Flow Switch Specification. Journal of Chemical Information and Modeling, 53
(9):1689–1699, 2013.

30. S. T. Ali, V. Sivaraman, A. Radford, and S. Jha. A Survey of Securing Networks
Using Software Defined Networking. IEEE Transactions On Reliability, 64(3):
1–12, 2015.

31. D. Kreutz, F. M.V. Ramos, and P. Verissimo. Towards secure and dependable
software-defined networks. Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking - HotSDN ’13, page 55, 2013.

32. C. Perrin. The CIA Triad. Retrieved February 12, 2016. URL http:// www.
techrepublic.com/ blog/ security/ the-cia-triad/ 488 .

33. R. Meyran. DefenseFlow: The First Ever SDN Application That Programs
Networks for DoS/DDoS Security. Retrieved March 10, 2016. URL https:
// blog.radware.com/ security/ 2013/ 04/ defenseflow-dosddos-security/ .

34. P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu. A security
enforcement kernel for OpenFlow networks. Proceedings of the first workshop on
Hot topics in software defined networks - HotSDN ’12, pages 121–126, 2012.

35. M. Mendonca, S. Seetharaman, and K. Obraczka. A flexible in-network IP
anonymization service. In IEEE International Conference on Communications,
pages 6651–6656, 2012.

36. A. Gember, C. Dragga, and A. Akella. ECOS: leveraging software-defined
networks to support mobile application offloading. Proceedings of the eighth
ACM/IEEE symposium on Architectures for networking and communications sys-
tems, pages 199–210, 2012.

37. J. M. Kizza. Guide to Computer Network Security. Springer Science and Business
Media, London, 2013.

127

http://www.techrepublic.com/blog/security/the-cia-triad/488
http://www.techrepublic.com/blog/security/the-cia-triad/488
https://blog.radware.com/security/2013/04/defenseflow-dosddos-security/
https://blog.radware.com/security/2013/04/defenseflow-dosddos-security/

www.manaraa.com

38. M. Roesch. The SNORT Project. Retrieved January 11, 2017. URL https:
// www.snort.org .

39. P. D. Boer and M. Pels. Host-based Intrusion Detection Systems. Amsterdam
University, 2005. URL https:// homepages.staff.os3.nl/ ∼delaat/ rp/ 2004-2005/
p19/ report.pdf .

40. M. Tavallaee, N. Stakhanova, and A. A. Ghorbani. Toward credible evaluation
of anomaly-based intrusion-detection methods. IEEE Transactions on Systems,
Man and Cybernetics Part C: Applications and Reviews, 40(5):516–524, 2010.

41. H. Liao, C. Richard Lin, Y. Lin, and K. Tung. Intrusion detection system: A
comprehensive review. Journal of Network and Computer Applications, 36(1):
16–24, 2013.

42. C. Morris. SANS - Information Security Resources. Retrieved Jan-
uary 6, 2016. URL https:// www.sans.org/ security-resources/ idfaq/
what-do-you-do-after-you-deploy-the-intrusion-detection-system/ 1/ 20 .

43. Trend Micro Inc. About OSSEC. Retrieved July 26, 2016. URL http:// ossec.
github.io/ about.html .

44. T. Xing, Z. Xiong, D. Huang, and D. Medhi. SDNIPS: Enabling Software-Defined
Networking based intrusion prevention system in clouds. Proceedings of the 10th
International Conference on Network and Service Management, CNSM 2014,
pages 308–311, 2014.

45. J. O’Hara. Toward a commodity enterprise middleware. Queue, 5(4):48–55, 2007.

46. VFabric. Choosing Your Messaging Protocol: AMQP, MQTT, or STOMP.
Retrieved March 10, 2016. URL http:// blogs.vmware.com/ vfabric/ 2013/ 02/
choosing-your-messaging-protocol-amqp-mqtt-or-stomp.html .

47. G. Marsh, A.P. Sampat, S. Potluri, and D.K. Panda. Scaling Advanced Message
Queuing Protocol (AMQP) Architecture with Broker Federation and InfiniBand.
Ohio State University, 2010. URL ftp:// ftp.cse.ohio-state.edu/ pub/ tech-report/
2009/ TR17.pdf .

48. C. Robertson. Practical OSSEC. SANS Institute InfoSec Reading
Room, 2011. URL https:// www.sans.org/ reading-room/ whitepapers/ detection/
practical-ossec-33699 .

49. Flowgrammable. SDN / Openflow / Message Layer. Retrieved November 14,
2016. URL http:// flowgrammable.org/ sdn/ openflow/ message-layer/ .

50. S. Godard. Linux User’s Manual: Mpstat Man Page. LinuxCommand. Retrieved
December 5, 2016. URL http:// www.linuxcommand.org/ man pages/ mpstat1.
html .

128

https://www.snort.org
https://www.snort.org
https://homepages.staff.os3.nl/~delaat/rp/2004-2005/p19/report.pdf
https://homepages.staff.os3.nl/~delaat/rp/2004-2005/p19/report.pdf
https://www.sans.org/security-resources/idfaq/what-do-you-do-after-you-deploy-the-intrusion-detection-system/1/20
https://www.sans.org/security-resources/idfaq/what-do-you-do-after-you-deploy-the-intrusion-detection-system/1/20
http://ossec.github.io/about.html
http://ossec.github.io/about.html
http://blogs.vmware.com/vfabric/2013/02/choosing-your-messaging-protocol-amqp-mqtt-or-stomp.html
http://blogs.vmware.com/vfabric/2013/02/choosing-your-messaging-protocol-amqp-mqtt-or-stomp.html
ftp://ftp.cse.ohio-state.edu/pub/tech-report/2009/TR17.pdf
ftp://ftp.cse.ohio-state.edu/pub/tech-report/2009/TR17.pdf
https://www.sans.org/reading-room/whitepapers/detection/practical-ossec-33699
https://www.sans.org/reading-room/whitepapers/detection/practical-ossec-33699
http://flowgrammable.org/sdn/openflow/message-layer/
http://www.linuxcommand.org/man_pages/mpstat1.html
http://www.linuxcommand.org/man_pages/mpstat1.html

www.manaraa.com

51. B. Hale. Estimating Log Generation for Security Information Event and Log
Management. Retrieved September 15, 2016. URL http:// content.solarwinds.
com/ creative/ pdf/ Whitepapers/ estimating log generation white paper.pdf .

52. G. Lyon. Ncat Command Execution. Retrieved August 11, 2016. URL https:
// nmap.org/ ncat/ guide/ ncat-exec.html .

53. Google. Drive Github. Retrieved September 14, 2016. URL https:// github.com/
odeke-em/ drive.

54. Microsoft. Windows Dev Center: QueryPerformanceCounter Function Documen-
tation. Retrieved November 4, 2016. URL https:// msdn.microsoft.com/ en-us/
library/ windows/ desktop/ ms644904(v=vs.85).aspx .

55. VMware. Guide to configure NTP on ESX servers. Retrieved November 23, 2016.
URL https:// kb.vmware.com/ kb/ 1003063 .

56. M. Lindquist. One-Way ANOVA. Retrieved November 11, 2016. URL http:
// www.stat.columbia.edu/ ∼martin/ W2024/ R3.pdf .

57. K. Seguin. How Unreliable is UDP. Retrieved December 30, 2016. URL http:
// openmymind.net/ How-Unreliable-Is-UDP/ .

58. Allied Market Research. Software Defined Networking (SDN)
Market is Expected to Reach 132.9 Billion by 2022. Retrieved
June 1, 2016. URL http:// www.prnewswire.com/ news-releases/
sdn-and-nfv-market-growing-at-86-cagr-to-2020-520790081.html .

59. J. Dix and A. Vahdat. Google’s software-defined/OpenFlow back-
bone drives WAN links to 100% utilization. Retrieved March 13,
2016. URL http:// www.networkworld.com/ article/ 2189197/ lan-wan/
google-s-software-defined-openflow-backbone-drives-wan-links-to-100--utilization.
html .

60. A. Hassidim, D. Raz, M. Segalov, and A. Shaqed. Network utilization: The flow
view. In Proceedings - IEEE INFOCOM, pages 1429–1437, 2013.

129

http://content.solarwinds.com/creative/pdf/Whitepapers/estimating_log_generation_white_paper.pdf
http://content.solarwinds.com/creative/pdf/Whitepapers/estimating_log_generation_white_paper.pdf
https://nmap.org/ncat/guide/ncat-exec.html
https://nmap.org/ncat/guide/ncat-exec.html
https://github.com/odeke-em/drive
https://github.com/odeke-em/drive
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644904(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644904(v=vs.85).aspx
https://kb.vmware.com/kb/1003063
http://www.stat.columbia.edu/~martin/W2024/R3.pdf
http://www.stat.columbia.edu/~martin/W2024/R3.pdf
http://openmymind.net/How-Unreliable-Is-UDP/
http://openmymind.net/How-Unreliable-Is-UDP/
http://www.prnewswire.com/news-releases/sdn-and-nfv-market-growing-at-86-cagr-to-2020-520790081.html
http://www.prnewswire.com/news-releases/sdn-and-nfv-market-growing-at-86-cagr-to-2020-520790081.html
http://www.networkworld.com/article/2189197/lan-wan/google-s-software-defined-openflow-backbone-drives-wan-links-to-100--utilization.html
http://www.networkworld.com/article/2189197/lan-wan/google-s-software-defined-openflow-backbone-drives-wan-links-to-100--utilization.html
http://www.networkworld.com/article/2189197/lan-wan/google-s-software-defined-openflow-backbone-drives-wan-links-to-100--utilization.html

www.manaraa.com

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

23-03-2017 Master’s Thesis Aug 2015—Mar 2017

Active Response Using Host-Based Intrusion Detection System and
Software-Defined Networking

17G139

Goodgion, Jonathan S., 2d Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
Wright-Patterson AFB OH 45433-7765

AFIT-ENG-MS-17-M-032

Intentionally Left Blank

DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

This research proposes AHNSR: Active Host-based Network Security Response by utilizing Host-based Intrusion
Detection Systems (HIDS) with Software-Defined Networking (SDN) to enhance system security by allowing dynamic
active response and reconstruction from a global network topology perspective. Responses include traffic redirection, host
quarantining, filtering, and more. A testable SDN-controlled network is constructed with multiple hosts, OpenFlow
enabled switches, and a Floodlight controller, all linked to a custom, novel interface for the Open-Source SECurity
(OSSEC) HIDS framework. OSSEC is implemented in a server-agent architecture, allowing scalability and OS
independence. System effectiveness is evaluated against the following factors: alert density and a selective Floodlight
module response types. At the expected operational load of 500 events per second (EPS), results reveal a mean system
response time of 0.5564 seconds from log generation to flow table update via Floodlights Access Control List module.
Load testing further assesses performance at 10 - 10000 EPS for all tested response modules.

SDN, IDS, OpenFlow, Software-Defined Networking, Intrusion Detection System

U U U U 147

Dr. Barry E. Mullins (ENG)

(937) 255-3636 x7979 Barry.Mullins@afit.edu

	Air Force Institute of Technology
	AFIT Scholar
	3-23-2017

	Active Response Using Host-Based Intrusion Detection System and Software-Defined Networking
	Jonathon S. Goodgion
	Recommended Citation

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Problem Statement
	Research Goals
	Hypothesis
	Approach
	Assumptions/Limitations
	Contributions
	Thesis Overview

	Background and Related Research
	Overview
	Networking
	History
	SDN Origination

	SDN Components
	Controller: A Networking Operating System
	Southbound Interface
	Northbound Interface
	Special/Optional Components

	Use Cases and Applications
	Access Control
	Mobility and Migration
	Fault Tolerance
	Dynamic Service Bandwidth
	Current Research Areas

	Security
	Attack Vectors
	Securing Using SDN

	Intrusion Detection Systems
	Alert Generation
	Incident Response

	OSSEC: Open Source SECurity
	Advanced Message Queuing Protocol
	Brokers
	RabbitMQ

	Related Research
	Conclusion

	AHNSR Design
	Overview
	System Summary
	SDN Controller
	Reactive/Proactive Flow Entry

	OSSEC Configuration
	Agents
	Decoder/Rules
	Active Response
	SDN Response
	Database

	Security
	Complete AHNSR Response Flow
	Design Summary

	Methodology
	Problem/Objective
	System Under Test
	Assumptions

	Metrics
	Experiment Factors
	Experiment Parameters
	Experimental Design
	Expected Load Level
	Treatments
	Testing Process
	Repeated Measures
	Timing

	Statistical Analysis
	Methodology Summary

	Results and Analysis
	Overview
	OSSEC Log Collection Behavior
	Performance Under Expected Load
	Expected Load: Response Time
	Expected Load: CPU

	Load Testing
	AG
	Load Testing: RT
	Load Testing: CPU

	RT Performance Models
	Dynamic Model

	Chapter Summary

	Conclusion
	Overview
	Research Conclusions
	Research Significance
	Future Work
	Chapter Summary

	Log Generation Script
	Experiment Management Script
	OSSEC Configuration
	Internal Options Configuration
	Floodlight Properties
	Active Response Script
	Data Parsing
	Networking Parameters
	R Analysis Script: Tests 1-4
	R Analysis Script: Load Tests
	Trial Ranges
	CPU Data Reduction
	Threat Level Classification
	Bibliography

